
Simulink®

Modeling Guidelines for High-Integrity Systems

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Modeling Guidelines for High-Integrity Systems
© COPYRIGHT 2009–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 2009 Online only New for Version 1.0 (Release 2009b)
April 2010 Online only Revised for Version 1.1 (Release 2010a)
September 2010 Online only Revised for Version 1.2 (Release 2010b)
April 2011 Online only Revised for Version 1.3 (Release 2011a)
September 2011 Online only Revised for Version 1.4 (Release 2011b)
March 2012 Online only Revised for Version 1.5 (Release 2012a)
September 2012 Online only Revised for Version 1.6 (Release 2012b)
March 2013 Online only Revised for Version 1.7 (Release 2013a)
September 2013 Online only Revised for Version 1.8 (Release 2013b)
March 2014 Online only Revised for Version 1.9 (Release 2014a)
October 2014 Online only Revised for Version 1.10 (Release 2014b)
March 2015 Online only Revised for Version 1.11 (Release 2015a)
September 2015 Online only Revised for Version 1.12 (Release 2015b)

v

Contents

Introduction
1

Motivation . 1-2

Guideline Template . 1-3

Model Advisor Checks for High-Integrity Modeling
Guidelines . 1-4

Simulink Block Considerations
2

Math Operations . 2-2
hisl_0001: Usage of Abs block . 2-3
hisl_0002: Usage of Math Function blocks (rem and

reciprocal) . 2-5
hisl_0003: Usage of Square Root blocks 2-7
hisl_0028: Usage of Reciprocal Square Root blocks 2-8
hisl_0004: Usage of Math Function blocks (natural logarithm

and base 10 logarithm) . 2-10
hisl_0005: Usage of Product blocks 2-13
hisl_0029: Usage of Assignment blocks 2-15

Ports & Subsystems . 2-20
hisl_0006: Usage of While Iterator blocks 2-21
hisl_0007: Usage of While Iterator subsystems 2-23
hisl_0008: Usage of For Iterator Blocks 2-26
hisl_0009: Usage of For Iterator Subsystem blocks 2-28
hisl_0010: Usage of If blocks and If Action Subsystem blocks 2-29
hisl_0011: Usage of Switch Case blocks and Action Subsystem

blocks . 2-31

vi Contents

hisl_0012: Usage of conditionally executed subsystems 2-33
hisl_0024: Inport interface definition 2-35
hisl_0025: Design min/max specification of input interfaces . 2-36
hisl_0026: Design min/max specification of output interfaces 2-38

Signal Routing . 2-40
hisl_0013: Usage of data store blocks 2-41
hisl_0015: Usage of Merge blocks . 2-45
hisl_0021: Consistent vector indexing method 2-47
hisl_0022: Data type selection for index signals 2-49
hisl_0023: Verification of model and subsystem variants . . . 2-50

Logic and Bit Operations . 2-51
hisl_0016: Usage of blocks that compute relational operators 2-52
hisl_0017: Usage of blocks that compute relational operators

(2) . 2-54
hisl_0018: Usage of Logical Operator block 2-55
hisl_0019: Usage of Bitwise Operator block 2-57

Stateflow Chart Considerations
3

Chart Properties . 3-2
hisf_0001: Mealy and Moore semantics 3-3
hisf_0002: User-specified state/transition execution order . . . 3-5
hisf_0009: Strong data typing (Simulink and Stateflow

boundary) . 3-7
hisf_0011: Stateflow debugging settings 3-9

Chart Architecture . 3-11
hisf_0003: Usage of bitwise operations 3-12
hisf_0004: Usage of recursive behavior 3-13
hisf_0007: Usage of junction conditions (maintaining mutual

exclusion) . 3-15
hisf_0010: Usage of transition paths (looping out of parent of

source and destination objects) . 3-16
hisf_0012: Chart comments . 3-18
hisf_0013: Usage of transition paths (crossing parallel state

boundaries) . 3-19
hisf_0014: Usage of transition paths (passing through states) 3-22

vii

hisf_0015: Strong data typing (casting variables and
parameters in expressions) . 3-23

MATLAB Function and MATLAB Code
Considerations

4
MATLAB Functions . 4-2

himl_0001: Usage of standardized MATLAB function
headers . 4-3

himl_0002: Strong data typing at MATLAB function
boundaries . 4-4

himl_0003: Limitation of MATLAB function complexity 4-6
himl_0005: Usage of global variables in MATLAB functions . 4-8

MATLAB Code . 4-11
himl_0004: MATLAB Code Analyzer recommendations for code

generation . 4-11
himl_0006: MATLAB code if / elseif / else patterns 4-15
himl_0007: MATLAB code switch / case / otherwise patterns 4-17
himl_0008: MATLAB code relational operator data types . . 4-19
himl_0009: MATLAB code with equal / not equal relational

operators . 4-20
himl_0010: MATLAB code with logical operators and

functions . 4-22

Configuration Parameter Considerations
5

Solver . 5-2
hisl_0040: Configuration Parameters > Solver > Simulation

time . 5-3
hisl_0041: Configuration Parameters > Solver > Solver

options . 5-4
hisl_0042: Configuration Parameters > Solver > Tasking and

sample time options . 5-5

viii Contents

Diagnostics . 5-7
hisl_0043: Configuration Parameters > Diagnostics > Solver . 5-8
hisl_0044: Configuration Parameters > Diagnostics > Sample

Time . 5-10
hisl_0301: Configuration Parameters > Diagnostics >

Compatibility . 5-12
hisl_0302: Configuration Parameters > Diagnostics > Data

Validity > Parameters . 5-13
hisl_0303: Configuration Parameters > Diagnostics > Data

Validity > Merge block . 5-14
hisl_0304: Configuration Parameters > Diagnostics > Data

Validity > Model Initialization . 5-15
hisl_0305: Configuration Parameters > Diagnostics > Data

Validity > Debugging . 5-16
hisl_0306: Configuration Parameters > Diagnostics >

Connectivity > Signals . 5-17
hisl_0307: Configuration Parameters > Diagnostics >

Connectivity > Buses . 5-18
hisl_0308: Configuration Parameters > Diagnostics >

Connectivity > Function calls . 5-19
hisl_0309: Configuration Parameters > Diagnostics > Type

Conversion . 5-20
hisl_0310: Configuration Parameters > Diagnostics > Model

Referencing . 5-21
hisl_0311: Configuration Parameters > Diagnostics >

Stateflow . 5-22

Optimizations . 5-23
hisl_0045: Configuration Parameters > Optimization >

Implement logic signals as Boolean data (vs. double) 5-24
hisl_0046: Configuration Parameters > Optimization > Block

reduction . 5-25
hisl_0048: Configuration Parameters > Optimization >

Application lifespan (days) . 5-26
hisl_0051: Configuration Parameters > Optimization > Signals

and Parameters > Loop unrolling threshold 5-27
hisl_0052: Configuration Parameters > Optimization > Data

initialization . 5-28
hisl_0053: Configuration Parameters > Optimization > Remove

code from floating-point to integer conversions that wraps
out-of-range values . 5-29

hisl_0054: Configuration Parameters > Optimization > Remove
code that protects against division arithmetic exceptions . 5-30

ix

hisl_0055: Prioritization of code generation objectives for high-
integrity systems . 5-31

MISRA C:2012 Compliance Considerations
6

Modeling Style . 6-2
hisl_0061: Unique identifiers for clarity 6-3
hisl_0062: Global variables in graphical functions 6-8
hisl_0063: Length of user-defined function names to improve

MISRA C:2012 compliance . 6-10
hisl_0064: Length of user-defined type object names to improve

MISRA C:2012 compliance . 6-11
hisl_0065: Length of signal and parameter names to improve

MISRA C:2012 compliance . 6-12
hisl_0201: Define reserved keywords to improve MISRA C:2012

compliance . 6-13
hisl_0202: Use of data conversion blocks to improve MISRA

C:2012 compliance . 6-14

Block Usage . 6-16
hisl_0020: Blocks not recommended for MISRA C:2012

compliance . 6-16
hisl_0101: Avoid invariant comparison operations to improve

MISRA C:2012 compliance . 6-17
hisl_0102: Data type of loop control variables to improve

MISRA C:2012 compliance . 6-20

Configuration Settings . 6-21
hisl_0060: Configuration parameters that improve MISRA

C:2012 compliance . 6-21
hisl_0312: Specify target specific configuration parameters to

improve MISRA C:2012 compliance 6-23
hisl_0313: Selection of bitfield data types to improve MISRA

C:2012 compliance . 6-24

Stateflow Chart Considerations . 6-25
hisf_0064: Shift operations for Stateflow data to improve

MISRA C:2012 compliance . 6-26

x Contents

hisf_0065: Type cast operations in Stateflow to improve MISRA
C:2012 compliance . 6-28

hisf_0211: Protect against use of unary operators in Stateflow
Charts to improve MISRA C:2012 compliance 6-29

hisf_0212: Data type of Stateflow for loop control variables to
improve MISRA C:2012 compliance 6-30

hisf_0213: Protect against divide-by-zero calculations in
Stateflow charts to improve MISRA C:2012 compliance . . 6-31

System Level . 6-34
hisl_0401: Encapsulation of code to improve MISRA C:2012

compliance . 6-34
hisl_0402: Use of custom #pragma to improve MISRA C:2012

compliance . 6-35
hisl_0403: Use of char data type improve MISRA C:2012

compliance . 6-36

1

Introduction

• “Motivation” on page 1-2
• “Guideline Template” on page 1-3
• “Model Advisor Checks for High-Integrity Modeling Guidelines” on page 1-4

1 Introduction

1-2

Motivation

MathWorks® intends this document for engineers developing models and generating
code for high-integrity systems using Model-Based Design with MathWorks products.
This document describes creating Simulink® models that are complete, unambiguous,
statically deterministic, robust, and verifiable. The document focus is on model settings,
block usage, and block parameters that impact simulation behavior or code generated by
the Embedded Coder® product.

These guidelines do not assume that you use a particular safety or certification standard.
The guidelines reference some safety standards where applicable, including:

• DO-178C / DO-331
• IEC 61508
• ISO 26262
• EN 50128
• MISRA C

Guidelines in this document might also be applicable to related standards, including IEC
62304, and DO-254.

You can use the Model Advisor to support adhering to these guidelines. Each guideline
lists the checks that are applicable to that guideline, or to parts of that guideline.

This document does not address model style or development processes. For more
information about creating models in a way that improves consistency, clarity, and
readability, see the “MAAB Control Algorithm Modeling” guidelines. Development
process guidance and additional information for specific standards is available with
the IEC Certification Kit (for IEC 61508 and ISO 26262) and DO Qualification Kit (for
DO-178 and DO-254) products.

Disclaimer While adhering to the recommendations in this document will reduce the risk
that an error is introduced during development and not be detected, it is not a guarantee
that the system being developed will be safe. Conversely, if some of the recommendations
in this document are not followed, it does not mean that the system being developed will
be unsafe.

http://www.mathworks.com/industries/aerospace/standards/do-178c.html
http://www.mathworks.com/industries/auto/standards/iec-61508.html
http://www.mathworks.com/automotive/standards/iso-26262.html
http://www.mathworks.com/industries/aerospace/standards/misra-c.html
http://www.mathworks.com/aerospace-defense/standards/do-254.html

 Guideline Template

1-3

Guideline Template

Guideline descriptions are documented, using the following template. Companies that
want to create additional guidelines are encouraged to use the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)
Description Description of the guideline
Prerequisites Links to guidelines that are prerequisites to this guideline (ID: Title)
Notes Notes for using the guideline
Rationale Rational for providing the guideline
Model
Advisor
Check

Title of and link to the corresponding Model Advisor check, if a check
exists

References References to standards that apply to guideline
See Also Links to additional information
Last Changed Version number of last change
Examples Guideline examples

1 Introduction

1-4

Model Advisor Checks for High-Integrity Modeling Guidelines

Simulink Verification and Validation™ includes Model Advisor checks for compliance
with safety standards referenced in the high-integrity guidelines, including:

• DO-178C / DO-331
• IEC 61508
• ISO 26262
• EN 50128

The high-integrity guidelines and corresponding Model Advisor checks are summarized
in the following table. Not all guidelines have Model Advisor checks. For some of the
guidelines without Model Advisor checks, it is not possible to automate checking of
the guideline. Guidelines without a corresponding check are noted as not applicable.
For information on using the Model Advisor, see “Run Model Checks” in the Simulink
documentation.

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0001: Usage of Abs block” DO-178C/DO-331: “Check usage of Math Operations
blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Math Operations blocks”

“hisl_0002: Usage of Math
Function blocks (rem and
reciprocal)”

DO-178C/DO-331: “Check usage of Math Operations
blocks”

“hisl_0003: Usage of Square Root
blocks”

Not applicable

“hisl_0028: Usage of Reciprocal
Square Root blocks”

Not applicable

“hisl_0004: Usage of Math
Function blocks (natural

DO-178C/DO-331: “Check usage of Math Operations
blocks”

http://www.mathworks.com/industries/aerospace/standards/do-178c.html
http://www.mathworks.com/industries/auto/standards/iec-61508.html
http://www.mathworks.com/automotive/standards/iso-26262.html

 Model Advisor Checks for High-Integrity Modeling Guidelines

1-5

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

logarithm and base 10
logarithm)”
“hisl_0005: Usage of Product
blocks”

DO-178C/DO-331: “Check safety-related diagnostic
settings for signal data”

“hisl_0029: Usage of Assignment
blocks”

DO-178C/DO-331: “Check usage of Math Operations
blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Math Operations blocks”

“hisl_0006: Usage of While
Iterator blocks”

DO-178C/DO-331: “Check usage of Ports and
Subsystems blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Ports and Subsystems blocks”

“hisl_0007: Usage of While
Iterator subsystems”

DO-178C/DO-331: “Check usage of Ports and
Subsystems blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Ports and Subsystems blocks”

“hisl_0008: Usage of For Iterator
Blocks”

DO-178C/DO-331: “Check usage of Ports and
Subsystems blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Ports and Subsystems blocks”

“hisl_0009: Usage of For Iterator
Subsystem blocks”

DO-178C/DO-331: “Check usage of Ports and
Subsystems blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Ports and Subsystems blocks”

“hisl_0010: Usage of If blocks and
If Action Subsystem blocks”

Not applicable

1 Introduction

1-6

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0011: Usage of Switch Case
blocks and Action Subsystem
blocks”

Not applicable

“hisl_0012: Usage of conditionally
executed subsystems”

Not applicable

“hisl_0024: Inport interface
definition”

IEC 61508, EN 50128 and ISO 26262: “Check for root
Inports with missing properties”

“hisl_0025: Design min/max
specification of input interfaces”

IEC 61508, EN 50128 and ISO 26262: “Check for root
Inports with missing range definitions”

“hisl_0026: Design min/max
specification of output interfaces”

IEC 61508, EN 50128 and ISO 26262: “Check for root
Outports with missing range definitions”

“hisl_0013: Usage of data store
blocks”

DO-178C/DO-331: “Check safety-related diagnostic
settings for data store memory”

“hisl_0015: Usage of Merge
blocks”

Not applicable

“hisl_0021: Consistent vector
indexing method”

DO-178C/DO-331: “Check for inconsistent vector
indexing methods”

IEC 61508, EN 50128 and ISO 26262: “Check for
inconsistent vector indexing methods”

“hisl_0022: Data type selection
for index signals”

Not applicable

“hisl_0023: Verification of model
and subsystem variants”

Not applicable

“hisl_0016: Usage of blocks that
compute relational operators”

DO-178C/DO-331: “Check usage of Logic and Bit
Operations blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Logic and Bit Operations blocks”

 Model Advisor Checks for High-Integrity Modeling Guidelines

1-7

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0017: Usage of blocks that
compute relational operators (2)”

DO-178C/DO-331: “Check usage of Logic and Bit
Operations blocks”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Logic and Bit Operations blocks”

“hisl_0018: Usage of Logical
Operator block”

DO-178C/DO-331: “Check usage of Logic and Bit
Operations blocks” and “Check safety-related
optimization settings”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Logic and Bit Operations blocks”

“hisl_0019: Usage of Bitwise
Operator block”

Not applicable

“hisf_0001: Mealy and Moore
semantics”

DO-178C/DO-331: “Check state machine type of
Stateflow charts”

IEC 61508, EN 50128 and ISO 26262: “Check state
machine type of Stateflow charts”

“hisf_0002: User-specified state/
transition execution order”

DO-178C/DO-331: “Check Stateflow charts for
ordering of states and transitions”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Stateflow constructs”

“hisf_0009: Strong data typing
(Simulink and Stateflow
boundary)”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Stateflow constructs”

“hisf_0011: Stateflow debugging
settings”

DO-178C/DO-331: “Check Stateflow debugging
options”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Stateflow constructs”

1 Introduction

1-8

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisf_0003: Usage of bitwise
operations”

In Modeling Standards for MAAB folder, “Check
for bitwise operations in Stateflow charts”

“hisf_0004: Usage of recursive
behavior”

Not applicable

“hisf_0007: Usage of junction
conditions (maintaining mutual
exclusion)”

Not applicable

“hisf_0010: Usage of transition
paths (looping out of parent of
source and destination objects)”

Not applicable

“hisf_0012: Chart comments” Not applicable
“hisf_0013: Usage of transition
paths (crossing parallel state
boundaries)”

Not applicable

“hisf_0014: Usage of transition
paths (passing through states)”

Not applicable

“hisf_0015: Strong data
typing (casting variables and
parameters in expressions)”

Not applicable

“himl_0001: Usage of
standardized MATLAB function
headers”

Not applicable

“himl_0002: Strong data typing
at MATLAB function boundaries”

DO-178C/DO-331: “Check for MATLAB Function
interfaces with inherited properties”

IEC 61508, EN 50128 and ISO 26262: “Check
for MATLAB Function interfaces with inherited
properties”

 Model Advisor Checks for High-Integrity Modeling Guidelines

1-9

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“himl_0003: Limitation of
MATLAB function complexity”

DO-178C/DO-331: “Check MATLAB Function
metrics”

IEC 61508, EN 50128 and ISO 26262: “Check
MATLAB Function metrics”

“himl_0004: MATLAB Code
Analyzer recommendations for
code generation”

DO-178C/DO-331: “Check MATLAB Code Analyzer
messages”

IEC 61508, EN 50128 and ISO 26262: “Check
MATLAB Code Analyzer messages”

“himl_0005: Usage of global
variables in MATLAB functions”

DO-178C/DO-331: “Check MATLAB code for global
variables”

IEC 61508, EN 50128 and ISO 26262: “Check
MATLAB code for global variables”

“himl_0006: MATLAB code if /
elseif / else patterns”

Not applicable

“himl_0007: MATLAB code
switch / case / otherwise
patterns”

Not applicable

“himl_0008: MATLAB code
relational operator data types”

Not applicable

“himl_0009: MATLAB code
with equal / not equal relational
operators”

Not applicable

“himl_0010: MATLAB code with
logical operators and functions”

Not applicable

“hisl_0040: Configuration
Parameters > Solver >
Simulation time”

Not applicable

1 Introduction

1-10

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0041: Configuration
Parameters > Solver > Solver
options”

Not applicable

“hisl_0042: Configuration
Parameters > Solver > Tasking
and sample time options”

Not applicable

“hisl_0043: Configuration
Parameters > Diagnostics >
Solver”

DO-178C/DO-331: “Check safety-related diagnostic
settings for solvers”

“hisl_0044: Configuration
Parameters > Diagnostics >
Sample Time”

DO-178C/DO-331: “Check safety-related diagnostic
settings for sample time”

“hisl_0301: Configuration
Parameters > Diagnostics >
Compatibility”

DO-178C/DO-331: “Check safety-related diagnostic
settings for compatibility”

“hisl_0302: Configuration
Parameters > Diagnostics > Data
Validity > Parameters”

DO-178C/DO-331: “Check safety-related diagnostic
settings for parameters”

“hisl_0303: Configuration
Parameters > Diagnostics > Data
Validity > Merge block”

Not applicable

“hisl_0304: Configuration
Parameters > Diagnostics > Data
Validity > Model Initialization”

DO-178C/DO-331: “Check safety-related diagnostic
settings for model initialization”

“hisl_0305: Configuration
Parameters > Diagnostics > Data
Validity > Debugging”

Not applicable

 Model Advisor Checks for High-Integrity Modeling Guidelines

1-11

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0306: Configuration
Parameters > Diagnostics >
Connectivity > Signals”

DO-178C/DO-331: “Check safety-related diagnostic
settings for signal connectivity”

“hisl_0307: Configuration
Parameters > Diagnostics >
Connectivity > Buses”

DO-178C/DO-331: “Check safety-related diagnostic
settings for bus connectivity”

“hisl_0308: Configuration
Parameters > Diagnostics >
Connectivity > Function calls”

DO-178C/DO-331: “Check safety-related diagnostic
settings that apply to function-call connectivity”

“hisl_0309: Configuration
Parameters > Diagnostics > Type
Conversion”

DO-178C/DO-331: “Check safety-related diagnostic
settings for type conversions”

“hisl_0310: Configuration
Parameters > Diagnostics >
Model Referencing”

DO-178C/DO-331: “Check safety-related diagnostic
settings for model referencing”

“hisl_0311: Configuration
Parameters > Diagnostics >
Stateflow”

Not applicable

“hisl_0045: Configuration
Parameters > Optimization
> Implement logic signals as
Boolean data (vs. double)”

DO-178C/DO-331: “Check safety-related optimization
settings”

“hisl_0046: Configuration
Parameters > Optimization >
Block reduction”

DO-178C/DO-331: “Check safety-related optimization
settings”

“hisl_0048: Configuration
Parameters > Optimization >
Application lifespan (days)”

DO-178C/DO-331: “Check safety-related optimization
settings”

1 Introduction

1-12

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0051: Configuration
Parameters > Optimization >
Signals and Parameters > Loop
unrolling threshold”

Not applicable

“hisl_0052: Configuration
Parameters > Optimization >
Data initialization”

DO-178C/DO-331: “Check safety-related optimization
settings”

“hisl_0053: Configuration
Parameters > Optimization >
Remove code from floating-point
to integer conversions that wraps
out-of-range values”

DO-178C/DO-331: “Check safety-related optimization
settings”

“hisl_0054: Configuration
Parameters > Optimization
> Remove code that protects
against division arithmetic
exceptions”

DO-178C/DO-331: “Check safety-related optimization
settings”

“hisl_0055: Prioritization of code
generation objectives for high-
integrity systems”

Not applicable

“hisl_0061: Unique identifiers for
clarity”

DO-178C/DO-331: “Check Stateflow charts for
uniquely defined data objects”

IEC 61508, EN 50128 and ISO 26262: “Check usage
of Stateflow constructs”

“hisl_0062: Global variables in
graphical functions”

Not applicable

 Model Advisor Checks for High-Integrity Modeling Guidelines

1-13

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0063: Length of user-
defined function names to
improve MISRA C:2012
compliance”

Not applicable

“hisl_0064: Length of user-
defined type object names
to improve MISRA C:2012
compliance”

Not applicable

“hisl_0065: Length of signal and
parameter names to improve
MISRA C:2012 compliance”

Not applicable

“hisl_0201: Define reserved
keywords to improve MISRA
C:2012 compliance”

Not applicable

“hisl_0202: Use of data
conversion blocks to improve
MISRA C:2012 compliance”

Not applicable

“hisl_0020: Blocks not
recommended for MISRA C:2012
compliance”

In Modeling Guidelines for MISRA C:2012 folder:
“Check for blocks not recommended for MISRA
C:2012”

“hisl_0101: Avoid invariant
comparison operations to improve
MISRA C:2012 compliance”

Not applicable

“hisl_0102: Data type of loop
control variables to improve
MISRA C:2012 compliance”

Not applicable

“hisl_0060: Configuration
parameters that improve MISRA
C:2012 compliance”

In Modeling Guidelines for MISRA C:2012 folder:
“Check configuration parameters for MISRA C:2012”

1 Introduction

1-14

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0312: Specify target
specific configuration parameters
to improve MISRA C:2012
compliance”

Not applicable

“hisl_0313: Selection of bitfield
data types to improve MISRA
C:2012 compliance”

Not applicable

“hisf_0064: Shift operations for
Stateflow data to improve MISRA
C:2012 compliance”

Not applicable

“hisf_0065: Type cast operations
in Stateflow to improve MISRA
C:2012 compliance”

Not applicable

“hisf_0211: Protect against use
of unary operators in Stateflow
Charts to improve MISRA C:2012
compliance”

Not applicable

“hisf_0212: Data type of
Stateflow for loop control
variables to improve MISRA
C:2012 compliance”

Not applicable

“hisf_0213: Protect against
divide-by-zero calculations in
Stateflow charts to improve
MISRA C:2012 compliance”

Not applicable

“hisl_0401: Encapsulation of
code to improve MISRA C:2012
compliance”

Not applicable

 Model Advisor Checks for High-Integrity Modeling Guidelines

1-15

High-Integrity Modeling Guideline Checks available in Model Advisor By Task folders:

• Modeling Standards for DO-178C/DO-331

• Modeling Standards for IEC 61508

• Modeling Standards for EN 50128

• Modeling Standards for ISO 26262

“hisl_0402: Use of custom
#pragma to improve MISRA
C:2012 compliance”

Not applicable

“hisl_0403: Use of char data
type improve MISRA C:2012
compliance”

Not applicable

2

Simulink Block Considerations

• “Math Operations” on page 2-2
• “Ports & Subsystems” on page 2-20
• “Signal Routing” on page 2-40
• “Logic and Bit Operations” on page 2-51

2 Simulink Block Considerations

2-2

Math Operations

In this section...

“hisl_0001: Usage of Abs block” on page 2-3
“hisl_0002: Usage of Math Function blocks (rem and reciprocal)” on page 2-5
“hisl_0003: Usage of Square Root blocks” on page 2-7
“hisl_0028: Usage of Reciprocal Square Root blocks” on page 2-8
“hisl_0004: Usage of Math Function blocks (natural logarithm and base 10 logarithm)”
on page 2-10
“hisl_0005: Usage of Product blocks” on page 2-13
“hisl_0029: Usage of Assignment blocks” on page 2-15

 Math Operations

2-3

hisl_0001: Usage of Abs block

ID: Title hisl_0001: Usage of Abs block

To support robustness of generated code, when using the Abs block,
A Avoid Boolean and unsigned integer data types as inputs to the Abs

block.

Description

B In the Abs block parameter dialog box, select Saturate on integer
overflow.

Notes The Abs block does not support Boolean data types. Specifying an unsigned
input data type, might optimize the Abs block out of the generated code,
resulting in a block you cannot trace to the generated code.

For signed data types, Simulink does not represent the absolute value of the
most negative value. When you select Saturate on integer overflow, the
absolute value of the data type saturates to the most positive representable
value. When you clear Saturate on integer overflow, absolute value
calculations in the simulation and generated code might not be consistent or
expected.
A Support generation of traceable code.Rationale
B Achieve consistent and expected behavior of model simulation and

generated code.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Math Operations blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Math Operations blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Math Operations blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Math Operations blocks

For DO-178C/DO-331 check details, see “Check usage of Math Operations
blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Math Operations blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset'

2 Simulink Block Considerations

2-4

ID: Title hisl_0001: Usage of Abs block

IEC 61508-3, Table A.4 (3) 'Defensive programming'
IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’
IEC 61508-3, Table B.8 (3) 'Control Flow Analysis'

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'
ISO 26262-6, Table 7 (f) 'Control flow analysis'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'
EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'
EN 50128, Table A.19 (3) 'Control Flow Analysis'

• DO-331, Section MB.6.3.2.d 'Low-level requirements are verifiable'
• MISRA C:2012, Dir 4.1

Last Changed R2015b
Examples

Recommended

Not Recommended

 Math Operations

2-5

hisl_0002: Usage of Math Function blocks (rem and reciprocal)

ID: Title hisl_0002: Usage of Math Function blocks (rem and reciprocal)

To support robustness of generated code, when using the Math Function
block with remainder-after-division (rem) or reciprocal (reciprocal)
functions:
A Protect the input of the reciprocal function from going to zero.

Description

B Protect the second input of the rem function from going to zero.
Note You can get a divide-by-zero operation, resulting in an infinite (Inf) output

value for the reciprocal function, or a Not-a-Number (NaN) output value
for the rem function. To avoid overflows or undefined values, protect the
corresponding input from going to zero.

Rationale A, B Protect against overflows and undefined numerical results.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check usage of
Math Operations blocks

For check details, see “Check usage of Math Operations blocks”.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262-6, Table 1(b) 'Use of language subsets'

ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
• MISRA C:2012, Dir 4.1

Last Changed R2015b
Examples In the following example, when the input signal oscillates around zero, the

output exhibits a large change in value. You need further protection against
the large change in value.

2 Simulink Block Considerations

2-6

ID: Title hisl_0002: Usage of Math Function blocks (rem and reciprocal)

 Math Operations

2-7

hisl_0003: Usage of Square Root blocks

ID: Title hisl_0003: Usage of Square Root blocks

To support robustness of generated code, when using the Square Root block,
do one of the following:
A Account for complex numbers as the output.

Description

B Protect the input from going negative.
Rationale A, B Avoid undesirable results in generated code.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262-6, Table 1(b) 'Use of language subsets'

ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
• MISRA C:2012, Dir 4.1

Last Changed R2015b
Examples

2 Simulink Block Considerations

2-8

hisl_0028: Usage of Reciprocal Square Root blocks

ID: Title hisl_0028: Usage of Reciprocal Square Root blocks

To support robustness of generated code, when using the Reciprocal Square
Root block, do one of the following:
A Protect the input from going negative.

Description

B Protect the input from going to zero.
Note You can get a divide-by-zero operation, resulting in an (Inf) output value

for the reciprocal function. To avoid overflows or undefined values, protect the
corresponding input from going to zero.

Rationale A, B Avoid undesirable results in generated code.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262-6, Table 1(b) 'Use of language subsets'

ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
• MISRA C:2012, Dir 4.1

Last Changed R2015b

 Math Operations

2-9

ID: Title hisl_0028: Usage of Reciprocal Square Root blocks

Examples

2 Simulink Block Considerations

2-10

hisl_0004: Usage of Math Function blocks (natural logarithm and base
10 logarithm)

ID: Title hisl_0004: Usage of Math Function blocks (natural logarithm and base 10
logarithm)

To support robustness of generated code, when using the Math Function
block with natural logarithm (log) or base 10 logarithm (log10) function
parameters,
A Protect the input from going negative.
B Protect the input from equaling zero.

Description

C Account for complex numbers as the output value.
Notes If you set the output data type to complex, the natural logarithm and base

10 logarithm functions output complex values for negative input values. If
you set the output data type to real, the functions output NAN for negative
numbers, and minus infinity (-inf) for zero values.

Rationale A, B,
C

Support generation of robust code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check usage of
Math Operations blocks

For check details, see “Check usage of Math Operations blocks”.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262-6, Table 1(b) 'Use of language subsets'

ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
• MISRA C:2012, Dir 4.1

Last Changed R2015b
Examples

 Math Operations

2-11

ID: Title hisl_0004: Usage of Math Function blocks (natural logarithm and base 10
logarithm)

You can protect against:

• Negative numbers using an Abs block.
• Zero values using a combination of the MinMax block and a Constant

block, with Constant value set to eps (epsilon).

The following example displays the resulting output for input values ranging
from -100 to 100.

2 Simulink Block Considerations

2-12

ID: Title hisl_0004: Usage of Math Function blocks (natural logarithm and base 10
logarithm)

 Math Operations

2-13

hisl_0005: Usage of Product blocks

ID: Title hisl_0005: Usage of Product blocks

To support robustness of generated code, when using the Product block with
divisor inputs,
A In Element-wise(.*) mode, protect divisor inputs from going to zero.
B In Matrix(*) mode, protect divisor inputs from becoming singular

input matrices.

Description

C Set the model configuration parameter Diagnostics > Data Validity >
Signals > Division by singular matrix to error.

Notes When using Product blocks for element-wise divisions, you might get a divide
by zero, resulting in a NaN output. To avoid overflows, protect divisor inputs
from going to zero.

When using Product blocks to compute the inverse of a matrix, or a matrix
division, you might get a divide by a singular matrix. This division results
in a NaN output. To avoid overflows, protect divisor inputs from becoming
singular input matrices.

During simulation, while the software inverts one of the input values of
a Product block that is in matrix multiplication mode, the Division by
singular matrix diagnostic can detect a singular matrix.

Rationale A, B,
C

Protect against overflows.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for signal data

For check details, see “Check safety-related diagnostic settings for signal
data”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262–6, Table 1(b) 'Use of language subsets'
ISO 26262–6, Table 1(d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.4.2.2 'Robustness Test Cases’

2 Simulink Block Considerations

2-14

ID: Title hisl_0005: Usage of Product blocks

DO-331, Section MB.6.4.3 'Requirements-Based Testing Methods’
• MISRA C:2012, Dir 4.1

Last Changed R2015b

 Math Operations

2-15

hisl_0029: Usage of Assignment blocks

ID: Title hisl_0029: Usage of Assignment blocks

Description To support robustness of generated code, when using the Assignment block,
initialize array fields before their first use.

Notes If the output vector of the Assignment block is not initialized with an input to the
block, elements of the vector might not be initialized in the generated code.

When the Assignment block is used iteratively and all array field are assigned
during one simulation time step, you do not need initialization input to the block.

Accessing uninitialized elements of block output can result in unexpected
behavior.

Rationale Avoid undesirable results in generated code.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage of
Math Operations blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of Math
Operations blocks

• By Task > Modeling Standards for EN 50128 > Check usage of Math
Operations blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of Math
Operations blocks

For DO-178C/DO-331 check details, see “Check usage of Math Operations blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of Math
Operations blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262–6, Table 1(b) 'Use of language subsets'
ISO 26262–6, Table 1(d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.1.e 'High-level requirements conform to standards’
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards’

• MISRA C:2012, Rule 9.1

2 Simulink Block Considerations

2-16

ID: Title hisl_0029: Usage of Assignment blocks

Last Changed R2015b

 Math Operations

2-17

ID: Title hisl_0029: Usage of Assignment blocks

Examples

Not Recommended: No initialization input Y0 when block is not used iteratively

2 Simulink Block Considerations

2-18

ID: Title hisl_0029: Usage of Assignment blocks

Recommended: Initialization input Y0 when block is not used iteratively

 Math Operations

2-19

ID: Title hisl_0029: Usage of Assignment blocks

Recommended: Initialize array fields when block is used iteratively

2 Simulink Block Considerations

2-20

Ports & Subsystems

In this section...

“hisl_0006: Usage of While Iterator blocks” on page 2-21
“hisl_0007: Usage of While Iterator subsystems” on page 2-23
“hisl_0008: Usage of For Iterator Blocks” on page 2-26
“hisl_0009: Usage of For Iterator Subsystem blocks” on page 2-28
“hisl_0010: Usage of If blocks and If Action Subsystem blocks” on page 2-29
“hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks” on page 2-31
“hisl_0012: Usage of conditionally executed subsystems” on page 2-33
“hisl_0024: Inport interface definition” on page 2-35
“hisl_0025: Design min/max specification of input interfaces” on page 2-36
“hisl_0026: Design min/max specification of output interfaces” on page 2-38

 Ports & Subsystems

2-21

hisl_0006: Usage of While Iterator blocks

ID: Title hisl_0006: Usage of While Iterator blocks

To support bounded iterative behavior in the generated code when using the
While Iterator block, in the While Iterator block parameters dialog box:
A Set Maximum number of iterations to a positive integer value; do

not set value to —1 for unlimited.

Description

B Consider selecting Show iteration number port to observe the
iteration value during simulation.

Note When you use While Iterator subsystems, set the maximum number of
iterations. If you use an unlimited number of iterations, the generated code
might include infinite loops, which lead to execution-time overruns.

To observe the iteration value during simulation and determine whether the
loop reaches the maximum number of iterations, select the While Iterator
block parameter Show iteration number port. If the loop reaches the
maximum number of iterations, verify the output values of the While Iterator
block.

Rationale A, B Support bounded iterative in the generated code.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Ports and Subsystems blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Ports and Subsystems blocks

For DO-178C/DO-331 check details, see “Check usage of Ports and
Subsystems blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Ports and Subsystems blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'

2 Simulink Block Considerations

2-22

ID: Title hisl_0006: Usage of While Iterator blocks

ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.1.e 'High-level requirements conform to

standards’
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards’

• MISRA C:2012, Dir 4.1
Last Changed R2015b

 Ports & Subsystems

2-23

hisl_0007: Usage of While Iterator subsystems

ID: Title hisl_0007: Usage of While Iterator subsystems

To support unambiguous behavior, when using While Iterator subsystems,
A Specify inherited (-1) or constant (inf) sample times for the blocks

within the subsystems.

Description

B Avoid using sample time-dependent blocks, such as integrators, filters,
and transfer functions, within the subsystems.

Rationale A, B Avoid ambiguous behavior from the subsystem.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Ports and Subsystems blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Ports and Subsystems blocks

For DO-178C/DO-331 check details, see “Check usage of Ports and
Subsystems blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Ports and Subsystems blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards’
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards’

Last Changed R2015b
Examples For iterative subsystems, the value delta T is nonzero for the first iteration

only. For subsequent iterations, the value is zero.

2 Simulink Block Considerations

2-24

ID: Title hisl_0007: Usage of While Iterator subsystems

In the following example, in the output of the Sum block calculation that
uses the unit delay, the Sum block calculation does not require delta T. The
output of the Discrete-Time Integrator block displays the result of having a
zero delta T value.

 Ports & Subsystems

2-25

ID: Title hisl_0007: Usage of While Iterator subsystems

2 Simulink Block Considerations

2-26

hisl_0008: Usage of For Iterator Blocks

ID: Title hisl_0008: Usage of For Iterator blocks

To support bounded iterative behavior in the generated code when using the
For Iterator block, do one of the following:
A In the For Iterator block parameters dialog box, set Iteration limit

source to internal.
B If Iteration limit source must be external, use a block that has a

constant value, such as a Width, Probe, or Constant.
C In the For Iterator block parameters dialog box, clear Set next i

(iteration variable) externally.

Description

D In the For Iterator block parameters dialog box, consider selecting
Show iteration variable to observe the iteration value during
simulation.

Notes When you use the For Iterator block, feed the loop control variable with
fixed (nonvariable) values to get a predictable number of loop iterations.
Otherwise, a loop can result in unpredictable execution times and, in the case
of external iteration variables, infinite loops that can lead to execution-time
overruns.

Rationale A, B,
C, D

Support bounded iterative behavior in generated code.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Ports and Subsystems blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Ports and Subsystems blocks

For DO-178C/DO-331 check details, see “Check usage of Ports and
Subsystems blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Ports and Subsystems blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’

 Ports & Subsystems

2-27

ID: Title hisl_0008: Usage of For Iterator blocks

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262-6, Table 1 (b) 'Use of language subsets'

ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, MB.Section 6.3.1.e 'High-level requirements conform to

standards’
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards’

• MISRA C:2012, Rule 14.2
Last Changed R2015b

2 Simulink Block Considerations

2-28

hisl_0009: Usage of For Iterator Subsystem blocks

ID: Title hisl_0009: Usage of For Iterator Subsystem blocks

To support unambiguous behavior, when using the For Iterator Subsystem
block,
A Specify inherited (-1) or constant (inf) sample times for blocks within

the subsystem.

Description

B Avoid using sample time-dependent blocks, such as integrators, filters,
and transfer functions, within the subsystem.

Rationale A, B Avoid ambiguous behavior from the subsystem.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Ports and Subsystems blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Ports and Subsystems blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Ports and Subsystems blocks

For DO-178C/DO-331 check details, see “Check usage of Ports and
Subsystems blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Ports and Subsystems blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’;
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
Last Changed R2015b
Examples See “hisl_0007: Usage of While Iterator subsystems” on page 2-23.

 Ports & Subsystems

2-29

hisl_0010: Usage of If blocks and If Action Subsystem blocks

ID: Title hisl_0010: Usage of If blocks and If Action Subsystem blocks

To support verifiable generated code, when using the If block with nonempty
Elseif expressions,
A In the block parameter dialog box, select Show else condition.

Description

B Connect the outports of the If block to If Action Subsystem blocks.
Prerequisites “hisl_0016: Usage of blocks that compute relational operators” on page

2-52
Notes The combination of If and If Action Subsystem blocks enable conditional

execution based on input conditions. When there is only an if branch, you do
not need to include an else branch.

Rationale A, B Support generation of verifiable code.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262–6, Table 1(b) 'Use of language subsets'

ISO 26262–6, Table 1(d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
See Also na_0012: Use of Switch vs. If-Then-Else Action Subsystem in the Simulink

documentation
Last Changed R2015b
Examples

Recommended: Elseif with Else

2 Simulink Block Considerations

2-30

ID: Title hisl_0010: Usage of If blocks and If Action Subsystem blocks

Not Recommended: No Else Path

Recommended: Only an If, no Else required

 Ports & Subsystems

2-31

hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks

ID: Title hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks

To support verifiable generated code, when using the Switch Case block:
A In the Switch Case block parameter dialog box, select Show default

case.
B Connect the outports of the Switch Case block to a Switch Case Action

Subsystem block.

Description

C Use an integer data type or an enumeration value for the inputs to
Switch Case blocks.

Prerequisites “hisl_0016: Usage of blocks that compute relational operators” on page
2-52

Notes The combination of Switch Case and If Action Subsystem blocks enable
conditional execution based on input conditions. Provide a default path of
execution in the form of a “Default” block.

Rationale A, B,
C

Support generation of verifiable code.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262–6, Table 1(b) 'Use of language subsets'
ISO 26262–6, Table 1(d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• MISRA C:2012, Rule 16.4
See Also db_0115: Simulink patterns for case constructs in the Simulink

documentation.
Last Changed R2015b
Examples The following graphic displays an example of providing a default path of

execution using a “Default” block.

2 Simulink Block Considerations

2-32

ID: Title hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks

 Ports & Subsystems

2-33

hisl_0012: Usage of conditionally executed subsystems

ID: Title hisl_0012: Usage of conditionally executed subsystems

To support unambiguous behavior, when using conditionally executed
subsystems:
A Specify inherited (-1) sample times for all blocks in the subsystem,

except Constant. Constant blocks can use infinite (inf) sample time.

Description

B If the subsystem is called asynchronously, avoid using sample time-
dependent blocks, such as integrators, filters, and transfer functions,
within the subsystem.

Notes Conditionally executed subsystems include:

• If Action
• Switch Case Action
• Function-Call
• Triggered
• Enabled

Sample time-dependent blocks include:

• Discrete State-Space
• Discrete-Time Integrator
• Discrete FIR Filter
• Discrete Filter
• Discrete Transfer Fcn
• Discrete Zero-Pole
• Transfer Fcn First Order
• Transfer Fnc Real Zero
• Transfer Fcn Lead or Lag

Rationale A, B Support unambiguous behavior.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262–6, Table 1(b) 'Use of language subsets'

ISO 26262–6, Table 1(d) 'Use of defensive implementation techniques'

2 Simulink Block Considerations

2-34

ID: Title hisl_0012: Usage of conditionally executed subsystems

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

Last Changed R2013b
Examples When using discrete blocks, the behavior depends on the operation across

multiple contiguous time steps. When the blocks are called intermittently, the
results may not conform to your expectations.

 Ports & Subsystems

2-35

hisl_0024: Inport interface definition

ID: Title hisl_0024: Inport interface definition

Description To support strong data typing and unambiguous behavior of the model
and the generated code, for each root-level Inport block, explicitly set the
following block parameters:

• Data type
• Port dimensions
• Sample time

Note Using root-level Inport blocks without fully defined dimensions, sample
times, or data type can lead to ambiguous simulation results. If you do not
explicitly define these parameters, Simulink back-propagates dimensions,
sample times, and data types from downstream blocks.

Rationale • Avoid unambiguous behavior.
• Support full specification of software interface.

Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > Check for root
Inports with missing properties

• By Task > Modeling Standards for ISO 26262 > Check for root
Inports with missing properties

• By Task > Modeling Standards for EN 50128 > Check for root
Inports with missing properties

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check for root
Inports with missing properties”.

References • IEC 61508-3, Table B.9 (5) ‘Fully defined interface’
• ISO 26262-4, Table 2 (2) ‘Precisely defined interfaces‘

ISO 26262-6, Table 1 (1f) ‘Use of unambiguous graphical representation‘
• EN 50128, Table A.3 (19) ‘Fully Defined Interface‘

Last Changed R2014b

2 Simulink Block Considerations

2-36

hisl_0025: Design min/max specification of input interfaces

ID: Title hisl_0025: Design min/max specification of input interfaces

Description Provide design min/max information for root-level Inport blocks to specify the
input interface ranges.

Notes • Specifying the range of Inport blocks on the root level enables additional
capabilitiesa. Examples include:

• Detection of overflows through simulation range checking.
• Code optimizations using Embedded Coder.
• Design model verification using Simulink Design Verifier™.
• Fixed-point autoscaling using Fixed-Point Designer™.

• Specified design ranges can be used by Embedded Coder to optimize
the generated code. If you want to use design ranges for optimization,
in the Configuration Parameters dialog box, on the Code Generation
pane, consider selecting Optimize using the specified minimum and
maximum values.

• Ranges for bus-type Inport blocks are specified with the bus elements of
the defining bus object. Simulink ignores range specifications provided
directly at Inport blocks that are bus-type.

Rationale Support precise specification of the input interface.
Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > Check for fully
defined interface range (Inports)

• By Task > Modeling Standards for ISO 26262 > Check for fully
defined interface range (Inports)

• By Task > Modeling Standards for EN 50128 > Check for fully
defined interface range (Inports)

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check for root
Inports with missing range definitions”.

References • IEC 61508-3, Table B.9 (5) ‘Fully defined interface’
• ISO 26262-4, Table 2 (2) ‘Precisely defined interfaces‘
• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3

(19) ‘Fully Defined Interface‘

 Ports & Subsystems

2-37

ID: Title hisl_0025: Design min/max specification of input interfaces

Last Changed R2013b

a. These capabilities leverage design range information for different purposes. For more information, refer to the
documentation for the tools you intend to use.

2 Simulink Block Considerations

2-38

hisl_0026: Design min/max specification of output interfaces

ID: Title hisl_0026: Design min/max specification of output interfaces

Description Provide design min/max information for root-level Outport blocks to specify
the output interface ranges.

Notes • Specifying the range of Outport blocks on the root level enables additional
capabilitiesa. Examples include:

• Detection of overflows through simulation range checking.
• Code optimizations using Embedded Coder.
• Design model verification using Simulink Design Verifier.
• Fixed-point autoscaling using Fixed-Point Designer.

• Specified design ranges can be used by Embedded Coder to optimize
the generated code. If you want to use design ranges for optimization,
in the Configuration Parameters dialog box, on the Code Generation
pane, consider selecting Optimize using the specified minimum and
maximum values.

• Ranges for bus-type Outport blocks are specified with the bus elements
of the defining bus object. Simulink ignores range specifications provided
directly at Outport blocks that are bus-type.

Rationale Support precise specification of the output interface.
Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > Check for fully
defined interface range (Outports)

• By Task > Modeling Standards for ISO 26262 > Check for fully
defined interface range (Outports)

• By Task > Modeling Standards for EN 50128 > Check for fully
defined interface range (Outports)

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check for root
Outports with missing range definitions”.

References • IEC 61508-3, Table B.9 (5) ‘Fully defined interface’
• ISO 26262-4, Table 2 (2) ‘Precisely defined interfaces‘
• EN 50128, Table A.1(11) – Software Interface Specifications, Table A.3

(19) ‘Fully Defined Interface‘

 Ports & Subsystems

2-39

ID: Title hisl_0026: Design min/max specification of output interfaces

Last Changed R2013b

a. These capabilities leverage design range information for different purposes. For more information, refer to the
documentation for the tools you intend to use.

2 Simulink Block Considerations

2-40

Signal Routing

In this section...

“hisl_0013: Usage of data store blocks” on page 2-41
“hisl_0015: Usage of Merge blocks” on page 2-45
“hisl_0021: Consistent vector indexing method” on page 2-47
“hisl_0022: Data type selection for index signals” on page 2-49
“hisl_0023: Verification of model and subsystem variants” on page 2-50

 Signal Routing

2-41

hisl_0013: Usage of data store blocks

ID: Title hisl_0013: Usage of data store blocks

To support deterministic behavior across different sample times or models
when using data store blocks, including Data Store Memory, Data Store
Read, and Data Store Write:
A In the Configuration Parameters dialog box, on the Diagnostics >

Data Validity pane, under Data Store Memory Block, set the
following parameters to error:

• Detect read before write
• Detect write after read
• Detect write after write
• Multitask data store
• Duplicate data store names

B Avoid data store reads and writes that occur across model and atomic
subsystem boundaries.

Description

C Avoid using data stores to write and read data at different rates,
because different rates can result in inconsistent exchanges of data.
To provide deterministic data coupling in multirate systems, use Rate
Transition blocks before Data Store Write blocks, or after Data Store
Read blocks.

Notes The sorting algorithm in Simulink does not take into account data coupling
between models and atomic subsystems.

Using data store memory blocks can have significant impact on your
software verification effort. Models and subsystems that use only inports
and outports to pass data provide a directly traceable interface, simplifying
the verification process.

Rationale A,
B,
C

Support consistent data values across different sample times or models.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for data store memory

2 Simulink Block Considerations

2-42

ID: Title hisl_0013: Usage of data store blocks

For check details, see “Check safety-related diagnostic settings for data store
memory”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.3.b 'Software architecture is consistent’
Last Changed R2013b

 Signal Routing

2-43

ID: Title hisl_0013: Usage of data store blocks

Examples The following examples use Rate Transition blocks to provide deterministic
data coupling in multirate systems

• For fast-to-slow transitions:

Set the rate of the slow sample time on either the Rate Transition block
or the Data Store Write block.

Do not place the Rate Transition block after the Data Store Read block.

• For slow-to-fast transitions:

If the Rate Transition block is after the Data Store Read block, specify
the slow rate on the Data Store Read block.

If the Rate Transition block is before the Data Store Write block, use the
inherited sample time for the blocks.

2 Simulink Block Considerations

2-44

ID: Title hisl_0013: Usage of data store blocks

 Signal Routing

2-45

hisl_0015: Usage of Merge blocks

ID: Title hisl_0015: Usage of Merge blocks

To support unambiguous behavior from Merge blocks,
A Use Merge blocks only with conditionally executed subsystems.
B Specify execution of the conditionally executed subsystems such that

only one subsystem executes during a time step.

Description

C Clear the Merge block parameter Allow unequal port widths.
Notes Simulink combines the inputs of the Merge block into a single output. The

output value at any time is equal to the most recently computed output of
the blocks that drive the Merge block. Therefore, the Merge block output is
dependent upon the execution order of the input computations.

To provide predictable behavior of the Merge block output, you must have
mutual exclusion between the conditionally executed subsystems feeding a
Merge block. If the inputs are not mutually exclusive, Simulink uses the last
input port.

Rationale A, B,
C

Avoid unambiguous behavior.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1(b) 'Use of language subsets'
ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.3.b 'Software architecture is consistent’
Last Changed R2015b

2 Simulink Block Considerations

2-46

ID: Title hisl_0015: Usage of Merge blocks

Recommended

Examples

Not Recommended

 Signal Routing

2-47

hisl_0021: Consistent vector indexing method

ID: Title hisl_0021: Consistent vector indexing method

Within a model, use:Description
A A consistent vector indexing method for all blocks. Blocks for which you

should set the indexing method include:

• Index Vector
• Multiport Switch
• Assignment
• Selector
• For Iterator

Rationale A Reduce the risk of introducing errors due to inconsistent indexing.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check for
inconsistent vector indexing methods

• By Task > Modeling Standards for IEC 61508 > Check for
inconsistent vector indexing methods

• By Task > Modeling Standards for ISO 26262 > Check for
inconsistent vector indexing methods

• By Task > Modeling Standards for EN 50128 > Check for
inconsistent vector indexing methods

For DO-178C/DO-331 check details, see “Check for inconsistent vector
indexing methods”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check for
inconsistent vector indexing methods”.

References • IEC 61508–3, Table A.3 (3) 'Language subset'
IEC 61508–3, Table A.4 (5) 'Design and coding standards'

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (f) 'Use of unambiguous graphical representation'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.12 (1) 'Coding Standard'

• DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'

2 Simulink Block Considerations

2-48

ID: Title hisl_0021: Consistent vector indexing method

See Also “cgsl_0101: Zero-based indexing”
Last Changed R2013b

 Signal Routing

2-49

hisl_0022: Data type selection for index signals

ID: Title hisl_0022: Data type selection for index signals

For index signals, use:
A An integer or enumerated data type
B A data type that covers the range of indexed values.

Description

Blocks that use a signal index include:

• Assignment
• Direct Lookup Table (n-D)
• Index Vector
• Interpolation Using Prelookup
• MATLAB® Function
• Multiport Switch
• n-D Lookup Table (internal type index selection)
• Selector
• Stateflow® Chart
A Prevent unexpected results that can occur with rounding operations

for floating-point data types.
Rationale

B Enable access to data in a vector.
References • IEC 61508–3, Table A.3 (2) 'Strongly typed programming language'

IEC 61508–3, Table A.4 (3) 'Defensive programming'
• ISO 26262-6, Table 1 (b) 'Use of language subsets'

ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.4.f 'Accuracy and Consistency of Source Code'
Last Changed R2013b

2 Simulink Block Considerations

2-50

hisl_0023: Verification of model and subsystem variants

ID: Title hisl_0023: Verification of model and subsystem variants

When verifying that a model is consistent with generated code, do one of the
following:
A In the Configuration Parameters dialog box, on the Code Generation

> Interface pane, disable variants in generated code by setting
Generate preprocessor conditionals to Disable all.

Description

B Verify all combinations of model variants that might be active in the
generated code.

A Simplify consistency testing between the model and generated code by
restricting the code base to a single variant.

Rationale

B Make sure that consistency testing between the model and generated
code is complete for all variants.

References • DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'

• IEC 61508–3, Table A.4 (7) 'Use of trusted / verified software modules and
components'

Last Changed R2012b

 Logic and Bit Operations

2-51

Logic and Bit Operations

In this section...

“hisl_0016: Usage of blocks that compute relational operators” on page 2-52
“hisl_0017: Usage of blocks that compute relational operators (2)” on page 2-54
“hisl_0018: Usage of Logical Operator block” on page 2-55
“hisl_0019: Usage of Bitwise Operator block” on page 2-57

2 Simulink Block Considerations

2-52

hisl_0016: Usage of blocks that compute relational operators

ID: Title hisl_0016: Usage of blocks that compute relational operators

To support the robustness of the operations, when using blocks that compute
relational operators, including Relational Operator, Compare To Constant,
Compare to Zero, and Detect Change

Description

A Avoid comparisons using the == or ~= operator on floating-point data
types.

Notes Due to floating-point precision issues, do not test floating-point expressions
for equality (==) or inequality (~=).

When the model contains a block computing a relational operator with the
== or ~= operators, the inputs to the block must not be single, double, or any
custom storage class that is a floating-point type. Change the data type of the
input signals, or rework the model to eliminate using the == or ~= operators
within blocks that compute relational operators.

Rationale A Improve model robustness.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Logic and Bit Operations blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Logic and Bit Operations blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Logic and Bit Operations blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Logic and Bit Operations blocks

For DO-178C/DO-331 check details, see “Check usage of Logic and Bit
Operations blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Logic and Bit Operations blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'

 Logic and Bit Operations

2-53

ID: Title hisl_0016: Usage of blocks that compute relational operators

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.1.g 'Algorithms are accurate'

DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
• MISRA C:2012, Dir 1.1

See Also “hisl_0017: Usage of blocks that compute relational operators (2)” on page
2-54

Last Changed R2015b
Examples Positive Pattern: To test whether two floating-point variables or expressions

are equal, compare the difference of the two variables against a threshold
that takes into account the floating-point relative accuracy (eps) and the
magnitude of the numbers.

The following pattern shows how to test two double-precision input signals,
In1 and In2, for equality.

2 Simulink Block Considerations

2-54

hisl_0017: Usage of blocks that compute relational operators (2)

ID: Title hisl_0017: Usage of blocks that compute relational operators (2)

To support unambiguous behavior in the generated code, when using blocks
that compute relational operators, including Relational Operator, Compare
To Constant, Compare to Zero, and Detect Change

Description

A Set the block Output data type parameter to Boolean.
Rationale A Support generation of code that produces unambiguous behavior.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Logic and Bit Operations blocks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Logic and Bit Operations blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Logic and Bit Operations blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Logic and Bit Operations blocks

For DO-178C/DO-331 check details, see “Check usage of Logic and Bit
Operations blocks”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Logic and Bit Operations blocks”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’;
IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'

• DO-331, Section MB.6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

• MISRA C:2012, Rule 10.1
See Also “hisl_0016: Usage of blocks that compute relational operators” on page 2-52
Last Changed R2015b

 Logic and Bit Operations

2-55

hisl_0018: Usage of Logical Operator block

ID: Title hisl_0018: Usage of Logical Operator block

To support unambiguous behavior of generated code, when using the Logical
Operator block,

Description

A Set the Output data type block parameter to Boolean.
Prerequisites “hisl_0045: Configuration Parameters > Optimization > Implement logic

signals as Boolean data (vs. double)” on page 5-24
Rationale A Avoid ambiguous behavior of generated code.
Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Logic and Bit Operations blocks

• By Task > Modeling Standards for ISO 26262 > Check usage of
Logic and Bit Operations blocks

• By Task > Modeling Standards for EN 50128 > Check usage of
Logic and Bit Operations blocks

• By Task > Modeling Standards for DO-178C/DO-331 > Check usage
of Logic and Bit Operations blocks

• By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related optimization settings

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Logic and Bit Operations blocks”.

For DO-178C/DO-331 check details, see “Check usage of Logic and Bit
Operations blocks” or “Check safety-related optimization settings”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'

• DO-331, Section MB.6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

• MISRA C:2012, Rule 10.1
Last Changed R2015b

2 Simulink Block Considerations

2-56

 Logic and Bit Operations

2-57

hisl_0019: Usage of Bitwise Operator block

ID: Title hisl_0019: Usage of Bitwise Operator block

To support unambiguous behavior, when using the Bitwise Operator block,
A Avoid signed integer data types as input to the block.

Description

B Choose an output data type that represents zero exactly.
Notes Bitwise operations on signed integers are not meaningful. If a shift operation

moves a signed bit into a numeric bit, or a numeric bit into a signed bit,
unpredictable and unwanted behavior can result.

Rationale A, B Support unambiguous behavior of generated code.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’
• ISO 26262-6, Table 1 (b) 'Use of language subsets'

ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'
EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'

• MISRA C:2012, Rule 10.1
See Also “hisf_0003: Usage of bitwise operations” on page 3-12in the Simulink

documentation
Last Changed R2015b

3

Stateflow Chart Considerations

• “Chart Properties” on page 3-2
• “Chart Architecture” on page 3-11

3 Stateflow Chart Considerations

3-2

Chart Properties

In this section...

“hisf_0001: Mealy and Moore semantics” on page 3-3
“hisf_0002: User-specified state/transition execution order” on page 3-5
“hisf_0009: Strong data typing (Simulink and Stateflow boundary)” on page 3-7
“hisf_0011: Stateflow debugging settings” on page 3-9

 Chart Properties

3-3

hisf_0001: Mealy and Moore semantics

ID: Title hisf_0001: Mealy and Moore semantics

To create Stateflow charts that implement a subset of Stateflow semantics,
A In the Chart properties dialog box, set State Machine Type to Mealy

or Moore.

Description

B Apply consistent settings to the Stateflow charts in a model.
Note Setting State Machine Type restricts the Stateflow semantics to pure

Mealy or Moore semantics. Mealy and Moore charts might be easier to
understand and use in high-integrity applications.

In Mealy charts, actions are associated with transitions. In the Moore charts,
actions are associated with states.

At compile time, the Stateflow software verifies that the chart semantics
comply with the formal definitions and rules of the selected type of state
machine. If the chart semantics are not in compliance, the software provides
a diagnostic message.

Rationale A, B Promote a clear modeling style.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check state
machine type of Stateflow charts

• By Task > Modeling Standards for IEC 61508 > Check state
machine type of Stateflow charts

• By Task > Modeling Standards for ISO 26262 > Check state
machine type of Stateflow charts

• By Task > Modeling Standards for EN 50128 > Check state
machine type of Stateflow charts

For DO-178C/DO-331 check details, see “Check state machine type of
Stateflow charts”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check state
machine type of Stateflow charts”.

References • IEC 61508-3,Table A.7 (2) 'Simulation/modeling'
• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'

3 Stateflow Chart Considerations

3-4

ID: Title hisf_0001: Mealy and Moore semantics

EN 50128, Table A.11 (3) 'Simulation'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'
DO-331, Section MB.6.3.3.b 'Software architecture is consistent'
DO-331, Section MB.6.3.3.e 'Software architecture conform to standards'

See Also “Create Mealy and Moore Charts” in the Stateflow documentation
Last Changed R2013b

 Chart Properties

3-5

hisf_0002: User-specified state/transition execution order

ID: Title hisf_0002: User-specified state/transition execution order

Do the following to explicitly set the execution order for active states and
valid transitions in Stateflow charts:
A In the Chart Properties dialog box, select User specified state/

transition execution order.
B In the Stateflow Editor View menu, select Show Transition

Execution Order.

Description

C Set default transition to evaluate last.
Note Selecting User specified state/transition execution order restricts

the dependency of a Stateflow chart semantics on the geometric position of
parallel states and transitions.

Specifying the execution order of states and transitions allows you to enforce
determinism in the search order for active states and valid transitions. You
have control of the order in which parallel states are executed and transitions
originating from a source are tested for execution. If you do not explicitly set
the execution order, the Stateflow software determines the execution order
following a deterministic algorithm.

Selecting Show Transition Execution Order displays the transition
testing order.

Rationale A, B,
C

Promote an unambiguous modeling style.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check
Stateflow charts for ordering of states and transitions

• By Task > Modeling Standards for IEC 61508 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for ISO 26262 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for EN 50128 > Check usage of
Stateflow constructs

For DO-178C/DO-331 check details, see “Check Stateflow charts for ordering
of states and transitions”.

3 Stateflow Chart Considerations

3-6

ID: Title hisf_0002: User-specified state/transition execution order

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Stateflow constructs”.

References This guideline supports adhering to:

• IEC 61508-3, Table A.3 (3) 'Language subset'
• ISO 26262-6, Table 1 (b) 'Use of language subsets'

ISO 26262-6, Table 1 (f) 'Use of unambiguous graphical representation'
• EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, Section MB.6.3.3.b 'Software architecture is consistent'

DO-331, Section MB.6.3.3.e 'Software architecture conform to standards '
See Also The following topics in the Stateflow documentation

• “Transition Testing Order in Multilevel State Hierarchy”
• “Execution Order for Parallel States”

Last Changed R2013b

 Chart Properties

3-7

hisf_0009: Strong data typing (Simulink and Stateflow boundary)

ID: Title hisf_0009: Strong data typing (Simulink and Stateflow boundary)

To support strong data typing between Simulink and Stateflow ,Description
A Select Use Strong Data Typing with Simulink I/O.

Notes By default, input to and output from Stateflow charts are of type double.
To interface directly with Simulink signals of data types other than double,
select Use Strong Data Typing with Simulink I/O. In this mode, data
types between the Simulink and Stateflow boundary are strongly typed, and
the Simulink software does not treat the data types as double. The Stateflow
chart accepts input signals of any data type supported by the Simulink
software, provided that the type of the input signal matches the type of the
corresponding Stateflow input data object. Otherwise, the software reports a
type mismatch error.

Rationale A Support strongly typed code.
Model Advisor
Checks

• By Task > Modeling Standards for IEC 61508 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for ISO 26262 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for EN 50128 > Check usage of
Stateflow constructs

For check details, see “Check usage of Stateflow constructs”.
References • IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’

• ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'
• EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

3 Stateflow Chart Considerations

3-8

ID: Title hisf_0009: Strong data typing (Simulink and Stateflow boundary)

Last Changed R2015b

 Chart Properties

3-9

hisf_0011: Stateflow debugging settings

ID: Title hisf_0011: Stateflow debugging settings

To protect against unreachable code and indeterminate execution time,
A • In the Configuration Parameters dialog box, set:

• Diagnostics > Data Validity > Wrap on overflow to error.
• Diagnostics > Data Validity > Simulation range checking

to error.
• In the model window, select:

• Simulation > Debug > Stateflow Error Checking Options
> Detect Cycles.

Description

B For each truth table in the model, in the Settings menu of the Truth
Table Editor, set the following parameters to Error:
Underspecified
Overspecified

Notes Run-time diagnostics are only triggered during simulation. If the error
condition is not reached during simulation, the error message is not triggered
for code generation.

Rationale A, B Protect against unreachable code and unpredictable execution time.
Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check
Stateflow debugging settings

• By Task > Modeling Standards for IEC 61508 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for ISO 26262 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for EN 50128 > Check usage of
Stateflow constructs

For DO-178C/DO-331 check details, see “Check Stateflow debugging options”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Stateflow constructs”.

References • IEC 61508-3, Table A.7 (2) 'Simulation/modeling'
• ISO 26262 Table 1 (d) 'Use of defensive implementation techniques'

3 Stateflow Chart Considerations

3-10

ID: Title hisf_0011: Stateflow debugging settings

• EN 50128, Table A.3 (1) 'Defensive Programming'
EN 50128, Table A.11 (3) 'Simulation'

• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'

Last Changed R2015b

 Chart Architecture

3-11

Chart Architecture

In this section...

“hisf_0003: Usage of bitwise operations” on page 3-12
“hisf_0004: Usage of recursive behavior” on page 3-13
“hisf_0007: Usage of junction conditions (maintaining mutual exclusion)” on page
3-15
“hisf_0010: Usage of transition paths (looping out of parent of source and destination
objects)” on page 3-16
“hisf_0012: Chart comments” on page 3-18
“hisf_0013: Usage of transition paths (crossing parallel state boundaries)” on page
3-19
“hisf_0014: Usage of transition paths (passing through states)” on page 3-22
“hisf_0015: Strong data typing (casting variables and parameters in expressions)” on
page 3-23

3 Stateflow Chart Considerations

3-12

hisf_0003: Usage of bitwise operations

ID: Title hisf_0003: Usage of bitwise operations

When using bitwise operations in Stateflow blocks,Description
A Avoid signed integer data types as operands to the bitwise operations.

Notes Normally, bitwise operations are not meaningful on signed integers.
Undesired behavior can occur. For example, a shift operation might move the
sign bit into the number, or a numeric bit into the sign bit.

Rationale A Promote unambiguous modeling style.
Model Advisor
Checks

By Task > Modeling Standards for MAAB > Stateflow > Check for
bitwise operations in Stateflow charts

For check details, see “Check for bitwise operations in Stateflow charts”.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’
• ISO 26262-6, Table 1 (b) 'Use of language subsets'

ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section 6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

• MISRA C:2012, Rule 10.1
See Also “hisl_0019: Usage of Bitwise Operator block”
Last Changed R2015b

 Chart Architecture

3-13

hisf_0004: Usage of recursive behavior

ID: Title hisf_0004: Usage of recursive behavior

To support bounded function call behavior, avoid using design patterns that
include unbounded recursive behavior. Recursive behavior is bound if you do
the following:
A Use an explicit termination condition that is local to the recursive call.

Description

B Make sure the termination condition is reached.
Notes This rule only applies if a chart is a classic Stateflow chart. If “hisf_0001:

Mealy and Moore semantics” on page 3-3 is followed, recursive behavior
is prevented due to restrictions in the chart semantics. Additionally, you
can detect the error during simulation by enabling the Stateflow diagnostic
Detect Cycles.

Rationale A, B Promote bounded function call behavior.
References • IEC 61508-3, Table B.1 (6) 'Limited use of recursion'

• ISO 26262-6, Table 9 (j) 'No recursions'
• EN 50128, Table A.12 (6) 'Limited Use of Recursion'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

• MISRA C:2012, Rule 17.2
Last Changed R2015b
Examples There are multiple patterns in Stateflow that can result in unbounded

recursion.

3 Stateflow Chart Considerations

3-14

ID: Title hisf_0004: Usage of recursive behavior

Recursive Function Calls

When the default state A is entered, event Evn is broadcast in the entry
action of A. Evn results in a recursive call of the interpretation algorithm.
Since A is active, the outgoing transition of A is tested. Since the current
event Evn matches the transition event (and because of the absence of
condition) the condition action is executed, broadcasting Evn again. This
results in a new call of the interpretation algorithm which repeats the same
sequence of steps until stack overflow.

Recursive Function Calls

 Chart Architecture

3-15

hisf_0007: Usage of junction conditions (maintaining mutual exclusion)

ID: Title hisf_0007: Usage of junction conditions (maintaining mutual exclusion)

To enhance clarity and prevent the generation of unreachable code,Description
A Make junction conditions mutually exclusive.

Notes You can use this guideline to maintain a modeling language subset in high-
integrity projects.

Rationale A Enhance clarity and prevent generation of unreachable code.
References • DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.d 'High-level requirements are verifiable'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.d 'Low-level requirements are verifiable'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'

Last Changed R2012b

3 Stateflow Chart Considerations

3-16

hisf_0010: Usage of transition paths (looping out of parent of source and
destination objects)

ID: Title hisf_0010: Usage of transition paths (looping out of parent of source and
destination objects

Transitions that loop out of the parent of the source and destination objects
are typically unintentional and cause the parent to deactivate.

Description

A Avoid using these transitions.
Notes You can use this guideline to maintain a modeling language subset in high-

integrity projects.
Rationale A Promote a clear modeling style.
References • DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

Last Changed R2012b
Examples

 Chart Architecture

3-17

ID: Title hisf_0010: Usage of transition paths (looping out of parent of source and
destination objects

3 Stateflow Chart Considerations

3-18

hisf_0012: Chart comments

ID: Title hisf_0012: Chart comments

To enhance traceability between generated code and a model,Description
A Add comments to the following Stateflow objects:

• Transitions
Rationale A Enhance traceability between generated code and the corresponding

model.
References • DO-331, Section MB.6.3.4.e 'Source code is traceable to low-level

requirements'
Last Changed R2012b

 Chart Architecture

3-19

hisf_0013: Usage of transition paths (crossing parallel state boundaries)

ID: Title hisf_0013: Usage of transition paths (crossing parallel state boundaries)

To avoid creating diagrams that are hard to understand,Description
A Avoid creating transitions that cross from one parallel state to

another.
Notes You can use this guideline to maintain a modeling language subset in high-

integrity projects.
Rationale A Enhance model readability.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'

Last Changed R2014b
Example In the following example, when Out_A is 4, both parent states (A_Parent

and B_Parent) are reentered. Reentering the parent states resets the values
of Out_A and Out_B to zero.

3 Stateflow Chart Considerations

3-20

ID: Title hisf_0013: Usage of transition paths (crossing parallel state boundaries)

 Chart Architecture

3-21

ID: Title hisf_0013: Usage of transition paths (crossing parallel state boundaries)

3 Stateflow Chart Considerations

3-22

hisf_0014: Usage of transition paths (passing through states)

ID: Title hisf_0014: Usage of transition paths (passing through states)

To avoid creating diagrams that are confusing and include transition paths
without benefit,

Description

A Avoid transition paths that go into and out of a state without ending
on a substate.

Notes You can use this guideline to maintain a modeling language subset in high-
integrity projects.

Rationale A Enhance model readability.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'

Last Changed R2014b
Examples

 Chart Architecture

3-23

hisf_0015: Strong data typing (casting variables and parameters in
expressions)

ID: Title hisf_0015: Strong data typing (casting variables and parameters in expressions)

To facilitate strong data typing,Description
A Explicitly type cast variables and parameters of different data types

in:

• Transition evaluations
• Transition assignments
• Assignments in states

Notes The Stateflow software automatically casts variables of different type into the
same data type. This guideline helps clarify data types of the intermediate
variables.

Rationale A Apply strong data typing.
References • IEC 61508-3, Table A.3 (2) ‘Strongly typed programming language’

• ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'
• EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent'
DO-331, Section MB.6.3.1.e 'High-level requirements conform to
standards'
DO-331, Section MB.6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent'
DO-331, Section MB.6.3.2.e 'Low-level requirements conform to standards'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

Last Changed R2015b

3 Stateflow Chart Considerations

3-24

ID: Title hisf_0015: Strong data typing (casting variables and parameters in expressions)

Examples

Recommended

Not Recommended

4

MATLAB Function and MATLAB Code
Considerations

• “MATLAB Functions” on page 4-2
• “MATLAB Code” on page 4-11

4 MATLAB Function and MATLAB Code Considerations

4-2

MATLAB Functions

In this section...

“himl_0001: Usage of standardized MATLAB function headers” on page 4-3
“himl_0002: Strong data typing at MATLAB function boundaries” on page 4-4
“himl_0003: Limitation of MATLAB function complexity” on page 4-6
“himl_0005: Usage of global variables in MATLAB functions” on page 4-8

 MATLAB Functions

4-3

himl_0001: Usage of standardized MATLAB function headers

ID: Title himl_0001: Usage of standardized MATLAB function headers

Description When using MATLAB functions, use a standardized header to provide
information about the purpose and use of the function.

Rationale A standardized header improves the readability and documentation of
MATLAB functions. The header should provide a function description and
usage information.

See Also • MathWorks Automotive Advisory Board (MAAB) guideline na_0025:
MATLAB Function Header

• Orion GN&C: MATLAB and Simulink Standards, jh_0073: eML Header
• “MATLAB Function Block Editor”

Last Changed R2014a
Examples A typical standardized function header includes:

• Function name
• Description
• Inputs and outputs (if possible, include size and type)
• Assumptions and limitations
• Revision history

http://www.mathworks.com/aerospace-defense/standards/FltDyn-CEV-08-148_MATLAB_Standards_v9_20111202.pdf

4 MATLAB Function and MATLAB Code Considerations

4-4

himl_0002: Strong data typing at MATLAB function boundaries

ID: Title himl_0002: Strong data typing at MATLAB function boundaries

Description To support strong data typing at the interfaces of MATLAB functions, explicitly
define the interface for input signals, output signals, and parameters, by
setting:

• Complexity
• Type

Rationale Defined interfaces:

• Allow consistency checking of interfaces.
• Prevent unintended generation of different functions for different input and

output types.
• Simplify testing of functions by limiting the number of test cases.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check for
MATLAB Function interfaces with inherited properties

• By Task > Modeling Standards for IEC 61508 > Check for MATLAB
Function interfaces with inherited properties

• By Task > Modeling Standards for ISO 26262 > Check for MATLAB
Function interfaces with inherited properties

• By Task > Modeling Standards for EN 50128 > Check for MATLAB
Function interfaces with inherited properties

For DO-178C/DO-331 check details, see “Check for MATLAB Function
interfaces with inherited properties”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check for
MATLAB Function interfaces with inherited properties”.

References • IEC 61508-3, Table B.9 (5) - Fully defined interface
• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation
• EN 50128, Table A.1 (11) - Software Interface Specifications
• DO-331, Section MB.6.3.2.b - Low-level requirements are accurate and

consistent
See Also • MathWorks Automotive Advisory Board (MAAB) guideline na_0034:

MATLAB Function block input/output settings

 MATLAB Functions

4-5

ID: Title himl_0002: Strong data typing at MATLAB function boundaries

• Orion GN&C: MATLAB and Simulink Standards, jh_0063: eML block
input / output settings

• “MATLAB Function Block Editor”
Last Changed R2014a
Examples Recommended:

In the “Ports and Data Manager”, specify the complexity and type of input u1
as follows:

• Complexity to Off
• Type to uint16

Not Recommended:

In the “Ports and Data Manager”, do not specify the complexity and type of
input u1 as follows:

• Complexity to Inherited
• Type to Inherit: Same as Simulink.

Note: To access the “Ports and Data Manager”, from the toolbar of the
“MATLAB Function Block Editor”, select Edit Data.

http://www.mathworks.com/aerospace-defense/standards/FltDyn-CEV-08-148_MATLAB_Standards_v9_20111202.pdf

4 MATLAB Function and MATLAB Code Considerations

4-6

himl_0003: Limitation of MATLAB function complexity

ID: Title himl_0003: Limitation of MATLAB function complexity

Description When using MATLAB functions, limit the size and complexity of MATLAB
code. The size and complexity of MATLAB functions is characterized by:

• Lines of code
• Nested function levels
• Cyclomatic complexity
• Density of comments (ratio of comment lines to lines of code)

Note Size and complexity limits can vary across projects. Typical limits might be as
described in this table:

Metric Limit

Lines of code 60 per MATLAB function
Nested function levels 31,2

Cyclomatic complexity 15
Density of comments 0.2 comment lines per line of code
1Pure Wrappers to external functions are not counted as separate levels.

2Standard MATLAB library functions do not count as separate levels.

Rationale • Readability
• Comprehension
• Traceability
• Maintainability
• Testability

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check for
MATLAB Function metrics

• By Task > Modeling Standards for IEC 61508 > Check for MATLAB
Function metrics

• By Task > Modeling Standards for ISO 26262 > Check for MATLAB
Function metrics

 MATLAB Functions

4-7

ID: Title himl_0003: Limitation of MATLAB function complexity

• By Task > Modeling Standards for EN 50128 > Check for MATLAB
Function metrics

For DO-178C/DO-331 check details, see “Check MATLAB Function metrics”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check MATLAB
Function metrics”.

References • IEC 61508-3, Table B.9 (5) - Fully defined interface
• ISO 26262-6, Table 1 (1f) - Use of unambiguous graphical representation
• EN 50128, Table A.1(11) - Software Interface Specifications
• DO-331, Sections MB.6.3.1.e - High-level requirements conform to

standards
DO-331, Sections MB.6.3.2.e - Low-level requirements conform to
standards

See Also • MathWorks Automotive Advisory Board (MAAB) guideline na_0016: Source
lines of MATLAB Functions

• MathWorks Automotive Advisory Board (MAAB) guideline na_0017:
Number of called function levels

• MathWorks Automotive Advisory Board (MAAB) guideline na_0018:
Number of nested if/else and case statement

• Orion GN&C: MATLAB and Simulink Standards, jh_0084: eML Comments
• “MATLAB Function Block Editor”

Last Changed R2014a

http://www.mathworks.com/aerospace-defense/standards/FltDyn-CEV-08-148_MATLAB_Standards_v9_20111202.pdf

4 MATLAB Function and MATLAB Code Considerations

4-8

himl_0005: Usage of global variables in MATLAB functions

ID: Title himl_0005: Usage of global variables in MATLAB functions

Description Avoid using global variables in MATLAB functions. To access shared data,
use signal lines or persistent data.

Notes Using global data in MATLAB code requires the definition of Data Store
Memory blocks or Custom Storage class objects. If the read and write access
order is not specified correctly, usage of this type of storage can lead to
unexpected results.

Rationale • Readability
• Maintainability
• Deterministic Behavior

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check
MATLAB code for global variables

• By Task > Modeling Standards for IEC 61508 > Check MATLAB
code for global variables

• By Task > Modeling Standards for EN 50128 > Check MATLAB
code for global variables

• By Task > Modeling Standards for ISO 26262 > Check MATLAB
code for global variables

For DO-178C/DO-331 check details, see “Check MATLAB code for global
variables”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check MATLAB
code for global variables”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
• ISO 26262-6, Table 1(b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, Section MB.6.3.3.b 'Consistency’

See Also • na_0024: Global Variables
• “hisl_0013: Usage of data store blocks”

Last Changed R2014a
Examples • Recommended

 MATLAB Functions

4-9

ID: Title himl_0005: Usage of global variables in MATLAB functions
function [Y,newG] = ...

 fcn(U,oldG)

 %#codegen

 Y = oldG * U;

 newG = oldG + 1;

end

• Recommended

function Y = fcn(U)

 %#codegen

 persistent G;

 if isempty(G)

 G = 1;

 end

• Not Recommended

4 MATLAB Function and MATLAB Code Considerations

4-10

ID: Title himl_0005: Usage of global variables in MATLAB functions

Write to global data function:

function fcn(U)

 %#codegen

 global G;

 G = U;

End

Read from global data function:

function Y = fcn

 %#codegen

 global G;

 Y = G;

end

 MATLAB Code

4-11

MATLAB Code

In this section...

“himl_0004: MATLAB Code Analyzer recommendations for code generation” on page
4-11
“himl_0006: MATLAB code if / elseif / else patterns” on page 4-15
“himl_0007: MATLAB code switch / case / otherwise patterns” on page 4-17
“himl_0008: MATLAB code relational operator data types” on page 4-19
“himl_0009: MATLAB code with equal / not equal relational operators” on page 4-20
“himl_0010: MATLAB code with logical operators and functions” on page 4-22

himl_0004: MATLAB Code Analyzer recommendations for code
generation

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code generation

When using MATLAB code:
A To activate MATLAB Code Analyzer messages for code generations,

use the %#codegen directive in external MATLAB functions.

Description

B Review the MATLAB Code Analyzer messages. Either:

• Implement the recommendations or
• Justify not following the recommendations with %#ok<message-

ID(S)> directives in the MATLAB function. Do not use %#ok
without specific message-IDs.

Notes The MATLAB Code Analyzer messages provide identifies potential errors,
problems, and opportunities for improvement in the code.
A In external MATLAB functions, the %#codegen directive activates

MATLAB Code Analyzer messages for code generation.
Rationale

B • Following MATLAB Code Analyzer recommendations helps to:

• Generate efficient code.
• Follow best code generation practices
• Avoid using MATLAB features not supported for code

generation.

4 MATLAB Function and MATLAB Code Considerations

4-12

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code generation

• Avoid code patterns which potentially influence safety.

• Not following MATLAB Code Analyzer recommendations are
justified with message id (e.g. %#ok<NOPRT>.

In the MATLAB function, using %#ok without a message id
justifies the full line, potentially hiding issues.

Model Advisor
Checks

• By Task > Modeling Standards for DO-178C/DO-331 > Check
MATLAB Code Analyzer messages

• By Task > Modeling Standards for IEC 61508 > Check MATLAB
Code Analyzer messages

• By Task > Modeling Standards for EN 50128 > Check MATLAB
Code Analyzer messages

• By Task > Modeling Standards for ISO 26262 > Check MATLAB
Code Analyzer messages

For DO-178C/DO-331 check details, see “Check MATLAB Code Analyzer
messages”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check MATLAB
Code Analyzer messages”.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.1.b 'Accuracy and consistency’
DO-331, Section MB.6.3.2.b 'Accuracy and consistency’

See Also “Check Code for Errors and Warnings”
Last Changed R2014a

 MATLAB Code

4-13

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code generation

Examples Recommended

• Activate MATLAB Code Analyzer messages for code generations:

%#codegen

 function y = function(u)

 y = inc_u(u));

 end

 function yy = inc_u(uu)

 yy = uu + 1;

 end

• Justify missing ; and value assigned might be unused:

y = 2*u %#ok<NOPRT,NAGSU> output for debugging

...

y = 3*u;

• If output is not desired and assigned value is unused, remove the line y =
2*u ...:

y = 3*u;

Not Recommended

• External MATLAB file used in Simulink with missing %#codegen
directive:

function y = function(u)

 % nested functions can’t be used for code generation

 function yy = inc_u(uu)

 yy = uu + 1;

 end

 y = inc_u(u));

 end

• All messages in line are justified by using %#ok without a message ID:

% missing ';' and the value might be unused

 y = 2*u %#ok

 …

 y = 3*u;

• No justification:

4 MATLAB Function and MATLAB Code Considerations

4-14

ID: Title himl_0004: MATLAB Code Analyzer recommendations for code generation
% missing justification for missing ';' and unnecessary '[..]'

y= [2*u]

 MATLAB Code

4-15

himl_0006: MATLAB code if / elseif / else patterns

ID: Title himl_0006: MATLAB code if / elseif / else patterns

Description For MATLAB code with if / elseif/ else constructs, terminate the
constructs with an else statement that includes at least a meaningful
comment. A final else statement is not required if there is no elseif.

Rationale • Defensive programming
• Readability
• Traceability

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1(b) 'Use of language subsets'
ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.1.e 'Conformance to standards'
DO-331, Section MB.6.3.2.e 'Conformance to standards'
DO-331, Section MB.6.3.3.e 'Conformance to standards'

See Also • “hisl_0010: Usage of If blocks and If Action Subsystem blocks”
Last Changed R2015b
Examples Recommended

• if u > 0

 y = 1;

 end

• if u > 0

 y = 1;

 elseif u < 0

 y = -1;

 else

 y = 0;

 end

• y = 0;

 if u > 0

 y = 1;

 elseif u < 0

y = -1;

4 MATLAB Function and MATLAB Code Considerations

4-16

ID: Title himl_0006: MATLAB code if / elseif / else patterns
 else

 % handled before if

 end

Not Recommended

• % empty else

 y = 0;

 if u > 0

 y = 1;

 elseif u < 0

 y = -1;

 else

 end

• % missing else

 y = 0;

 if u > 0

 y = 1;

 elseif u < 0

 y = -1;

 end

 MATLAB Code

4-17

himl_0007: MATLAB code switch / case / otherwise patterns

ID: Title himl_0007: MATLAB code switch / case / otherwise patterns

Description For MATLAB code with switch statements, include:

• At least two case statements.
• An otherwise statement that at least includes a meaningful comment.

Note If there is only one case and one otherwise statement, consider using an
if / else statement.

Rationale • Defensive programming
• Readability
• Traceability

References • IEC 61508-3, Table A.3 (3) 'Language subset’
IEC 61508-3, Table A.4 (3) 'Defensive programming’

• ISO 26262-6, Table 1(b) 'Use of language subsets'
ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

• DO-331, Section MB.6.3.1.e 'Conformance to standards'
DO-331, Section MB.6.3.2.e 'Conformance to standards'
DO-331, Section MB.6.3.3.e 'Conformance to standards'

• MISRA C:2012, Rule 16.4
See Also • na_0022: Recommended patterns for Switch/Case statements

• “hisl_0011: Usage of Switch Case blocks and Action Subsystem blocks”
Last Changed R2015b
Examples Recommended

• switch u

 case 1

 y = 3;

 case 3

 y = 1;

 otherwise

 y = 1;

 end

4 MATLAB Function and MATLAB Code Considerations

4-18

ID: Title himl_0007: MATLAB code switch / case / otherwise patterns

• y = 0;

 switch u

 case 1

 y = 3;

 case 3

 y = 1;

 otherwise

 % handled before switch

 end

Not Recommended

• % no case statements

 switch u

 otherwise

 y = 1;

 end

• % empty otherwise statement

 switch u

 case 1

 y = 3;

 case 3

 y = 1;

 otherwise

 end

• % no otherwise statement

 switch u

 case 1

 y = 3;

 end

 MATLAB Code

4-19

himl_0008: MATLAB code relational operator data types

ID: Title himl_0008: MATLAB code relational operator data types

Description For MATLAB code with relational operators, use the same data type for the
left and right operands.

Note If the two operands have different data types, MATLAB will promote both
operands to a common data type. This can lead to unexpected results.

Rationale • Prevent implicit casts
• Prevent unexpected results

References • IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’
IEC 61508-3, Table A.3 (3) 'Language subset’

• ISO 26262-6, Table 1(c) 'Enforcement of strong typing'
ISO 26262-6, Table 1(b) 'Use of language subsets'

• EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'
EN 50128, Table A.4 (11) 'Language Subset'

• DO-331, Section MB.6.3.1.g 'Algorithms are accurate'
DO-331, Section MB.6.3.2.g 'Algorithms are accurate'

See Also • “hisl_0016: Usage of blocks that compute relational operators”
• “hisl_0017: Usage of blocks that compute relational operators (2)”

Last Changed R2014a
Examples Recommended

• myBool == true

myInt8 == int8(1)

Not Recommended

• myBool == 1

myInt8 == true

myInt8 == 1

myInt8 == int16(1)

myEnum1.EnumVal == int32(1)

4 MATLAB Function and MATLAB Code Considerations

4-20

himl_0009: MATLAB code with equal / not equal relational operators

ID: Title himl_0009: MATLAB code with equal / not equal relational operators

Description For MATLAB code with equal or not equal relational operators, avoid using
the following data types:

• Single
• Double
• Types derived from single or double data types

Note Consider the following code fragments:

1 sqrt(2)^2 == 2

2 sqrt(2^2) == 2

Mathematically, both fragments are true. However, because of floating point
rounding effects, the results are:

1 false

2 true

Rationale • Prevent unexpected results
References • IEC 61508-3, Table A.3 (3) 'Language subset’

IEC 61508-3, Table A.4 (3) 'Defensive programming’
• ISO 26262-6, Table 1 (b) 'Use of language subsets'

ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.1.g 'Algorithms are accurate’

EN 50128, MB.6.3.2.g ' 'Defensive Programming'
• MISRA C:2012, Dir 1.1

See Also • jc_0481: Use of hard equality comparisons for floating point numbers in
Stateflow

• “hisl_0016: Usage of blocks that compute relational operators”
Last Changed R2015b
Examples Recommended

 MATLAB Code

4-21

ID: Title himl_0009: MATLAB code with equal / not equal relational operators

• myDouble >= 0.99 && myDouble <= 1.01; % test range

Not Recommended

• myDouble == 1.0

mySingle ~= 15.0

4 MATLAB Function and MATLAB Code Considerations

4-22

himl_0010: MATLAB code with logical operators and functions

ID: Title himl_0010: MATLAB code with logical operators and functions

Description For logical operators and logical functions in MATLAB code, use logical data
types

Notes Logical operators: &&, ||, ~

Logical functions: and, or, not, xor
Rationale • Prevent unexpected results
References • IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’

IEC 61508-3, Table A.3 (3) 'Language subset’
• ISO 26262-6, Table 1(c) 'Enforcement of strong typing'

ISO 26262-6, Table 1(b) 'Use of language subsets'
• EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'

EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, Section MB.6.3.1.g 'Algorithms are accurate'

DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
Last Changed R2014a
Examples Recommended

• ~myLogical

(myInt8 > int8(4)) && myLogical

xor(myLogical1,myLogical2)

Not Recommended

• ~myInt8

myInt8 && myDouble

5

Configuration Parameter
Considerations

• “Solver” on page 5-2
• “Diagnostics” on page 5-7
• “Optimizations” on page 5-23

5 Configuration Parameter Considerations

5-2

Solver

In this section...

“hisl_0040: Configuration Parameters > Solver > Simulation time” on page 5-3
“hisl_0041: Configuration Parameters > Solver > Solver options” on page 5-4
“hisl_0042: Configuration Parameters > Solver > Tasking and sample time options” on
page 5-5

 Solver

5-3

hisl_0040: Configuration Parameters > Solver > Simulation time

ID: Title hisl_0040: Configuration Parameters > Solver > Simulation time

For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Solver pane, set parameters for simulation
time as follows:
A Start time to 0.0.

Description

B Stop time to a positive value that is less than the value of
Application lifespan (days).

Note Simulink allows nonzero start times for simulation. However, production code
generation requires a zero start time.

By default, Application lifespan (days) is inf. If you do not change this
setting, any positive value for Stop time is valid.

You specify Stop time in seconds and Application lifespan (days) is in
days.

Rationale A Generate code that is valid for production code generation.
References • IEC 61508-3, Table A.3 (3) 'Language subset'

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'

See Also • “hisl_0048: Configuration Parameters > Optimization > Application
lifespan (days)” on page 5-26

• Solver Pane section of the Simulink documentation
Last Changed R2013b

5 Configuration Parameter Considerations

5-4

hisl_0041: Configuration Parameters > Solver > Solver options

ID: Title hisl_0041: Configuration Parameters > Solver > Solver options

For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Solver pane, set parameters for solvers as
follows:
A Type to Fixed-step.

Description

B Solver to discrete (no continuous states).
Note Generating code for production requires a fixed-step, discrete solver.
Rationale A, B Generate code that is valid for production code generation.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'

See Also “Solver Pane” in the Simulink documentation
Last Changed R2013b

 Solver

5-5

hisl_0042: Configuration Parameters > Solver > Tasking and sample time
options

ID: Title hisl_0042: Configuration Parameters > Solver > Tasking and sample time options

For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Solver pane, set parameters for tasking and
sample time as follows:
A Periodic sample time constraint to Specified and assign values

to Sample time properties.

Caution If you use a referenced model as a reusable function, set
Periodic sample time constraint to Ensure sample time
independent.

B Tasking mode for periodic sample times to SingleTasking or
MultiTasking.

Description

C Clear the parameter Automatically handle data transfers
between tasks.

Notes Selecting the Automatically handle data transfers between tasks check
box might result in inserting rate transition code without a corresponding
model construct. This might impede establishing full traceability or showing
that unintended functions are not introduced.

You can select or clear the Higher priority value indicates higher task
priority check box . Selecting this check box determines whether the priority
for Sample time properties uses the lowest values as highest priority, or
the highest values as highest priority.

Rationale A, B,
C

Support fully specified models and unambiguous code.

References • IEC 61508-3, Table A.3 (3) 'Language subset’
• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, Section MB.6.3.4.e 'Source code is traceable to low-level

requirements’
See Also “Solver Pane” in the Simulink documentation

5 Configuration Parameter Considerations

5-6

ID: Title hisl_0042: Configuration Parameters > Solver > Tasking and sample time options

Last Changed R2013b

 Diagnostics

5-7

Diagnostics

In this section...

“hisl_0043: Configuration Parameters > Diagnostics > Solver” on page 5-8
“hisl_0044: Configuration Parameters > Diagnostics > Sample Time” on page 5-10
“hisl_0301: Configuration Parameters > Diagnostics > Compatibility” on page 5-12
“hisl_0302: Configuration Parameters > Diagnostics > Data Validity > Parameters” on
page 5-13
“hisl_0303: Configuration Parameters > Diagnostics > Data Validity > Merge block” on
page 5-14
“hisl_0304: Configuration Parameters > Diagnostics > Data Validity > Model
Initialization” on page 5-15
“hisl_0305: Configuration Parameters > Diagnostics > Data Validity > Debugging” on
page 5-16
“hisl_0306: Configuration Parameters > Diagnostics > Connectivity > Signals” on page
5-17
“hisl_0307: Configuration Parameters > Diagnostics > Connectivity > Buses” on page
5-18
“hisl_0308: Configuration Parameters > Diagnostics > Connectivity > Function calls” on
page 5-19
“hisl_0309: Configuration Parameters > Diagnostics > Type Conversion” on page
5-20
“hisl_0310: Configuration Parameters > Diagnostics > Model Referencing” on page
5-21
“hisl_0311: Configuration Parameters > Diagnostics > Stateflow” on page 5-22

5 Configuration Parameter Considerations

5-8

hisl_0043: Configuration Parameters > Diagnostics > Solver

ID: Title hisl_0043: Configuration Parameters > Diagnostics > Solver

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics pane, set the Solver parameters as
follows:

• Algebraic loop to error.
• Minimize algebraic loop to error.
• Unspecified inheritability of sample times to error.
• Automatic solver parameter selection to error.
• State name clash to warning.
• Block priority violation to error if you are using block priorities.

Note Enabling diagnostics pertaining to the solver provides information to detect
violations of other guidelines.

If Diagnostic Parameter... Is Not Set As Indicated, Then ...

Algebraic loop Automatic breakage of algebraic loops
can go undetected and might result in
unpredictable block order execution.

Minimize algebraic loop Automatic breakage of algebraic loops
can go undetected and might result in
unpredictable block order execution.

Block priority violation Block execution order can include
undetected conflicts that might result
in unpredictable block order execution.

Unspecified inheritability of
sample times

An S-function that is not explicitly
set to inherit sample time can go
undetected and result in unpredictable
behavior.

Automatic solver parameter
selection

An automatic change to the solver, step
size, or simulation stop time can go
undetected and might the operation of
generated code.

 Diagnostics

5-9

ID: Title hisl_0043: Configuration Parameters > Diagnostics > Solver

If Diagnostic Parameter... Is Not Set As Indicated, Then ...

State name clash A name being used for more than one
state might go undetected.

You can set the following solver diagnostic parameters to anyvalue:
Min step size violation
Sample hit time adjusting
Consecutive zero crossings violation
Solver data inconsistency
Extraneous discrete derivative signals

Rationale Support generation of robust and unambiguous code.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for solvers

For check details, see “Check safety-related diagnostic settings for solvers”.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, MB.6.3.3.e 'Software architecture conforms to standards’

See Also • “Diagnostics Pane: Solver” in the Simulink documentation
• jc_0021: Model diagnostic settings in the Simulink documentation

Last Changed R2015b

5 Configuration Parameter Considerations

5-10

hisl_0044: Configuration Parameters > Diagnostics > Sample Time

ID: Title hisl_0044: Configuration Parameters > Diagnostics > Sample Time

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Sample Time pane, set the
following Sample Time parameters to error:

• Source block specifies -1 sample time
• Multitask rate transition
• Single task rate transition
• Multitask conditionally executed subsystem
• Tasks with equal priority
• Enforce sample times specified by Signal Specification blocks

If the target system does not allow preemption between tasks that have equal
priority, set Tasks with equal priority to none.

Note Enabling diagnostics pertaining to the solver provides information to detect
violations of other guidelines.

If Diagnostic Parameter... Is Not Set As Indicated, Then ...

Source block specifies -1 sample
time

Use of inherited sample times for
a source block, such as Sine Wave,
can go undetected and result in
unpredictable execution rates for source
and downstream blocks.

Multitask rate transition Invalid rate transitions between two
blocks operating in multitasking mode
can go undetected. You cannot use
invalid rate transitions for embedded
real-time software applications.

Single task rate transition A rate transition between two blocks
operating in single-tasking mode can
go undetected. You cannot use single-
tasking rate transitions for embedded
real-time software applications.

 Diagnostics

5-11

ID: Title hisl_0044: Configuration Parameters > Diagnostics > Sample Time

If Diagnostic Parameter... Is Not Set As Indicated, Then ...

Multitask conditionally executed
subsystems

A conditionally executed multirate
subsystem, operating in multitasking
mode. might go undetected and corrupt
data or show unexpected behavior in a
target system that allows preemption.

Tasks with equal priority Two asynchronous tasks with equal
priority might go undetected and show
unexpected behavior in target systems
that allow preemption.

Enforce sample times specified by
Signal Specification blocks

Inconsistent sample times for a Signal
Specification block and the connected
destination block might go undetected
and result in unpredictable execution
rates.

Rationale A Support generation of robust and unambiguous code.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for sample time

For check details, see “Check safety-related diagnostic settings for sample time”.
References • IEC 61508-3, Table A.3 (3) 'Language subset’

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'
• DO-331, Section MB.6.3.1.b 'High-level requirements are accurate and

consistent’
DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and
consistent’
DO-331, Section MB.6.3.3.b 'Software architecture is consistent’

See Also “Diagnostics Pane: Sample Time” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-12

hisl_0301: Configuration Parameters > Diagnostics > Compatibility

ID: Title hisl_0301: Configuration Parameters > Diagnostics > Compatibility

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Compatibility pane, set the
Compatibility parameters as follows:

S-function upgrades needed to error
Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for compatibility

For check details, see “Check safety-related diagnostic settings for compatibility”.
See Also “ Diagnostics Pane: Compatibility” in the Simulink documentation
Last Changed R2015b

 Diagnostics

5-13

hisl_0302: Configuration Parameters > Diagnostics > Data Validity >
Parameters

ID: Title hisl_0302: Configuration Parameters > Diagnostics > Data Validity > Parameters

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Data Validity pane, set the
Parameters parameters as follows:

• Detect downcast to error
• Detect precision loss to error
• Detect overflow to error
• Detect underflow to error

Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for parameters

For check details, see “Check safety-related diagnostic settings for parameters”.
See Also “ Diagnostics Pane: Data Validity” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-14

hisl_0303: Configuration Parameters > Diagnostics > Data Validity >
Merge block

ID: Title hisl_0303: Configuration Parameters > Diagnostics > Data Validity > Merge block

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Data Validity pane, set the
Merge parameters as follows:

• Detect multiple driving blocks executing at the same time step to
error

Rationale Improve robustness of design.
See Also “ Diagnostics Pane: Data Validity” in the Simulink documentation
Last Changed R2015b

 Diagnostics

5-15

hisl_0304: Configuration Parameters > Diagnostics > Data Validity >
Model Initialization

ID: Title hisl_0304: Configuration Parameters > Diagnostics > Data Validity > Model
Initialization

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Data Validity pane, set the
Model Initialization parameters as follows:

• Underspecified initialization detection to Simplified
Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for model initialization

For check details, see “Check safety-related diagnostic settings for model
initialization”.

See Also “ Diagnostics Pane: Data Validity” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-16

hisl_0305: Configuration Parameters > Diagnostics > Data Validity >
Debugging

ID: Title hisl_0305: Configuration Parameters > Diagnostics > Data Validity > Debugging

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Data Validity pane, set the
Debugging parameters as follows:

• Model Verification block enabling to Disable all
Rationale Improve robustness of design.
See Also “ Diagnostics Pane: Data Validity” in the Simulink documentation
Last Changed R2015b

 Diagnostics

5-17

hisl_0306: Configuration Parameters > Diagnostics > Connectivity >
Signals

ID: Title hisl_0306: Configuration Parameters > Diagnostics > Connectivity > Signals

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Connectivity pane, set the
Signals parameters as follows:

• Signal label mismatch to error
• Unconnected block input ports to error
• Unconnected block output ports to error
• Unconnected line to error

Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for signal connectivity

For check details, see “Check safety-related diagnostic settings for signal
connectivity”.

See Also “ Diagnostics Pane: Connectivity” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-18

hisl_0307: Configuration Parameters > Diagnostics > Connectivity >
Buses

ID: Title hisl_0307: Configuration Parameters > Diagnostics > Connectivity > Buses

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Connectivity pane, set the Buses
parameters as follows:

• Unspecified bus object at root Outport block to error
• Element name mismatch to error
• Mux blocks used to create bus signals to error
• Non-bus signals treated as bus signals to error
• Repair bus selections to Warn and repair

Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for bus connectivity

For check details, see “Check safety-related diagnostic settings for bus
connectivity”.

See Also “ Diagnostics Pane: Connectivity” in the Simulink documentation
Last Changed R2015b

 Diagnostics

5-19

hisl_0308: Configuration Parameters > Diagnostics > Connectivity >
Function calls

ID: Title hisl_0308: Configuration Parameters > Diagnostics > Connectivity > Function calls

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Connectivity pane, set the
Function calls parameters as follows:

• Invalid function-call connection to error
• Context-dependent inputs to Enable all as errors

Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings that apply to function-call connectivity

For check details, see “Check safety-related diagnostic settings that apply to
function-call connectivity”.

See Also “ Diagnostics Pane: Connectivity” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-20

hisl_0309: Configuration Parameters > Diagnostics > Type Conversion

ID: Title hisl_0309: Configuration Parameters > Diagnostics > Type Conversion

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Type Conversion pane, set the
Type Conversion parameters as follows:

• Vector/matrix block input conversion to error
Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for type conversions

For check details, see “Check safety-related diagnostic settings for type
conversions”.

See Also “ Diagnostics Pane: Type Conversion” in the Simulink documentation
Last Changed R2015b

 Diagnostics

5-21

hisl_0310: Configuration Parameters > Diagnostics > Model Referencing

ID: Title hisl_0310: Configuration Parameters > Diagnostics > Model Referencing

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Model Referencing pane, set the
Model Referencing parameters as follows:

• Model block version mismatch to error
• Port and parameter mismatch to error
• Invalid root Inport/Outport block connection to error
• Unsupported data logging to error

Rationale Improve robustness of design.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related diagnostic settings for model referencing

For check details, see “Check safety-related diagnostic settings for model
referencing”.

See Also “Diagnostics Pane: Model Referencing” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-22

hisl_0311: Configuration Parameters > Diagnostics > Stateflow

ID: Title hisl_0311: Configuration Parameters > Diagnostics > Stateflow

Description For models used to develop high-integrity systems, in the Configuration
Parameters dialog box, on the Diagnostics > Stateflow pane, set the Stateflow
parameters as follows:

• Unexpected backtracking to error
• Invalid input data access in chart initialization to error
• No unconditional default transitions to error
• Transitions outside natural parent to error
• Transition shadowing to error

Rationale Improve robustness of design.
See Also “ Diagnostics Pane: Stateflow” in the Simulink documentation
Last Changed R2015b

 Optimizations

5-23

Optimizations

In this section...

“hisl_0045: Configuration Parameters > Optimization > Implement logic signals as
Boolean data (vs. double)” on page 5-24
“hisl_0046: Configuration Parameters > Optimization > Block reduction” on page
5-25
“hisl_0048: Configuration Parameters > Optimization > Application lifespan (days)” on
page 5-26
“hisl_0051: Configuration Parameters > Optimization > Signals and Parameters > Loop
unrolling threshold” on page 5-27
“hisl_0052: Configuration Parameters > Optimization > Data initialization” on page
5-28
“hisl_0053: Configuration Parameters > Optimization > Remove code from floating-point
to integer conversions that wraps out-of-range values” on page 5-29
“hisl_0054: Configuration Parameters > Optimization > Remove code that protects
against division arithmetic exceptions” on page 5-30
“hisl_0055: Prioritization of code generation objectives for high-integrity systems” on
page 5-31

5 Configuration Parameter Considerations

5-24

hisl_0045: Configuration Parameters > Optimization > Implement logic
signals as Boolean data (vs. double)

ID: Title hisl_0045: Configuration Parameters > Optimization > Implement logic signals as
Boolean data (vs. double)

To support unambiguous behavior when using logical operators, relational
operators, and the Combinatorial Logic block,

Description

A Select Implement logic signals as Boolean data (vs. double) in
the Optimization pane of the Configuration Parameters dialog box.

Notes Selecting the Implement logic signals as Boolean data (vs. double)
parameter, enables Boolean type checking, which produces an error when
blocks that prefer Boolean inputs connect to double signals. This checking
results in generating code that requires less memory.

Rationale A Avoid ambiguous model behavior and optimize memory for generated
code.

Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related optimization settings

For check details, see “Check safety-related optimization settings”.
References • IEC 61508-3, Table A.3 (2) 'Strongly typed programming language’

• ISO 26262-6, Table 1 (c) 'Enforcement of strong typing'
• EN 50128, Table A.4 (8) 'Strongly Typed Programming Language'
• DO-331, MB.6.3.1.e 'High-level requirements conform to standards'

DO-331, MB.6.3,2.e 'Low-level requirements conform to standards'
• MISRA C:2012, Rule 10.1

Last Changed R2015b

 Optimizations

5-25

hisl_0046: Configuration Parameters > Optimization > Block reduction

ID: Title hisl_0046: Configuration Parameters > Optimization > Block reduction

Description To support unambiguous presentation of the generated code and support
traceability between a model and generated code,

 A Clear the Block reduction parameter on the Optimization pane of
the Configuration Parameters dialog box.

Notes Selecting Block reduction might optimize blocks out of the code generated
for a model. This results in requirements without associated code and violates
traceability objectives.

Rationale A Support unambiguous presentation of generated code.
 A Support traceability between a model and generated code.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related optimization settings

For check details, see “Check safety-related optimization settings”.
References • IEC 61508-3, Clauses 7.4.7.2, 7.4.8.3, and 7.7.2.8 which require to

demonstrate that no unintended functionality has been introduced
• DO-331, Section MB.6.3.4.e ‘Source code is traceable to low-level

requirements’
See Also “Block reduction” in the Simulink documentation
Last Changed R2012b

5 Configuration Parameter Considerations

5-26

hisl_0048: Configuration Parameters > Optimization > Application
lifespan (days)

ID: Title hisl_0048: Configuration Parameters > Optimization > Application lifespan (days)

To support the robustness of systems that run continuously, in the
Configuration Parameters dialog box, on the Optimization pane:

Description

A Set Application lifespan (days) to inf.
Notes Embedded applications might run continuously. Do not assume a limited

lifespan for timers and counters. . When you set Application lifespan
(days) to inf, the simulation time is less than the application lifespan.

Rationale A Support robustness of systems that run continuously.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related optimization settings

For check details, see “Check safety-related optimization settings”.
References • IEC 61508-3, Table A.4 (3) 'Defensive Programming’

• ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'
• EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.1.g 'Algorithms are accurate’

DO-331, Section MB.6.3.2.g 'Algorithms are accurate’
See Also • “Application lifespan (days)” in the Simulink documentation

• “hisl_0040: Configuration Parameters > Solver > Simulation time” on page
5-3

Last Changed R2013b

 Optimizations

5-27

hisl_0051: Configuration Parameters > Optimization > Signals and
Parameters > Loop unrolling threshold

ID: Title hisl_0051: Configuration Parameters > Optimization > Signals and Parameters >
Loop unrolling threshold

To support unambiguous code, set the minimum signal or parameter width
for generating a for loop. In the Configuration Parameters dialog box, on the
Optimization > Signals and Parameters pane,
A Set Loop unrolling threshold to 2 or greater.

Description

B If Pack Boolean data into bitfields is selected, set Bitfield
declarator type specifier to uint_T.

Notes The Loop unrolling threshold parameter specifies the array size at which
the code generator begins to use a for loop, instead of separate assignment
statements, to assign values to the elements of a signal or parameter array.
The default value is 5.

Rationale A Support unambiguous generated code.
References • IEC 61508-3, Table A.3 (3) 'Language Subset'

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
• EN 50128, Table A.4 (11) 'Language Subset'
• MISRA C:2012, Rule 6.1

See Also “Loop unrolling threshold ” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-28

hisl_0052: Configuration Parameters > Optimization > Data initialization

ID: Title hisl_0052: Configuration Parameters > Optimization > Data initialization

To support complete definition of data and initialize internal and
external data to zero, in the Configuration Parameters dialog box, on the
Optimization pane,
A Clear Remove root level I/O zero initialization.

Description

B Clear Remove internal data zero initialization.
Note Explicitly initialize all variables. If the run-time environment of the target

system provides mechanisms to initialize all I/O and state variables, consider
using the initialization of the target as an alternative to the suggested
settings.

Rationale A, B Support fully defined data in generated code.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related optimization settings

For check details, see “Check safety-related optimization settings”.
References • IEC 61508-3, Table A.4 (3) 'Defensive Programming’

• ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'
• EN 50128, Table A.3 (1) 'Defensive Programming'
• DO-331, Section MB.6.3.3.b 'Software architecture is consistent’

See Also Information about the following parameters in the Simulink documentation:

• “Remove root level I/O zero initialization”
• “Remove internal data zero initialization”

Last Changed R2015b

 Optimizations

5-29

hisl_0053: Configuration Parameters > Optimization > Remove code from
floating-point to integer conversions that wraps out-of-range values

ID: Title hisl_0053: Configuration Parameters > Optimization > Remove code from floating-
point to integer conversions that wraps out-of-range values

To support verifiable code, In the Configuration Parameters dialog box, on
the Optimization pane,

Description

A Consider selecting Remove code from floating-point to integer
conversions that wraps out-of-range values.

Notes Avoid overflows as opposed to handling them with wrapper code. For blocks
that have the parameter Saturate on overflow cleared, clearing Remove
code from floating-point to integer conversions that wraps out-of-
range values might add code that wraps out of range values, resulting in
unreachable code that cannot be tested.

Rationale A Support generation of code that can be verified.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related optimization settings

For check details, see “Check safety-related optimization settings”.
References • IEC 61508-3, Table A.4 (3) 'Defensive Programming’

• ISO 26262-6, Table 1 (d) 'Use of defensive implementation techniques'
• EN 50128, Table A.3 (1) 'Defensive Programming'
• MISRA C:2012, Rule 2.1
• DO-331, Section MB.6.3.1.g 'Algorithms are accurate’

DO-331, Section MB.6.3.2.g 'Algorithms are accurate’
See Also “Remove code from floating-point to integer conversions that wraps out-of-

range values” in the Simulink documentation
Last Changed R2015b

5 Configuration Parameter Considerations

5-30

hisl_0054: Configuration Parameters > Optimization > Remove code that
protects against division arithmetic exceptions

ID: Title hisl_0054: Configuration Parameters > Optimization > Remove code that protects
against division arithmetic exceptions

To support the robustness of the operations, in the Configuration Parameters
dialog box, on the Optimization pane,

Description

A Clear Remove code that protects against division arithmetic
exceptions.

Note Avoid division-by-zero exceptions. If you clear Remove code that protects
against division arithmetic exceptions, the code generator produces code
that guards against division by zero for fixed-point data.

Rationale A Protect against divide-by-zero exceptions for fixed-point code.
Model Advisor
Checks

By Task > Modeling Standards for DO-178C/DO-331 > Check safety-
related optimization settings

For check details, see “Check safety-related optimization settings”.
References • IEC 61508-3, Table A.3 (3) 'Language Subset’

IEC 61508-3 Table A.4 (3) 'Defensive Programming’
• ISO 26262-6, Table 1(b) 'Use of language subsets'

ISO 26262-6, Table 1(d) 'Use of defensive implementation techniques'
• EN 50128, Table A.4 (11) 'Language Subset'

EN 50128, Table A.3 (1) 'Defensive Programming'
• MISRA C:2012, Dir 4.1
• DO-331, Section MB.6.3.1.g 'Algorithms are accurate’

DO-331, Section MB.6.3.2.g 'Algorithms are accurate’
See Also “Remove code that protects against division arithmetic exceptions” in the

Simulink documentation
Last Changed R2015b

 Optimizations

5-31

hisl_0055: Prioritization of code generation objectives for high-integrity
systems

ID: Title hisl_0055: Prioritized configuration objectives for high-integrity systems

Prioritize objectives for high-integrity systems using the Code Generation
Advisor by:
A Assigning the highest priority to the high-integrity and traceability

objectives (Safety precaution and Traceability)

Description

B Configuring the Code Generation Advisor to run before generating
code by setting Check model before generating code to On
(proceed with warnings) or On (stop for warnings).

Notes Model configuration parameters provide control over many aspects of
generated code. The prioritization of objectives specifies how configuration
parameters are set when conflicts between objectives occur.

Including the ROM, RAM, and Execution efficiency objectives with a lower
priority in the list enables efficiency optimizations that do not conflict with
Safety precaution and Traceability in the active configuration.

Review the resulting parameter configurations to verify that safety
requirements are met.

Rationale A, B When you use the Code Generation Advisor, configuration parameters
conform to the objectives that you want and they are consistently
enforced.

References • DO-331, Section MB.6.3.4.e 'Source code is traceable to low-level
requirements'

• IEC61508–3, Table A.3 (3) 'Language Subset'
IEC 61508–3, Table A.4 (3) 'Defensive Programing'

• ISO 26262–6, Table 1(b) 'Use of language subsets'
ISO 26262–6, Table 1(d) 'Use of defensive implementation techniques'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.3 (1) 'Defensive Programming'

See also • “Set Objectives — Code Generation Advisor Dialog Box”
• “Manage a Configuration Set”
• “cgsl_0301: Prioritization of code generation objectives for code efficiency”

5 Configuration Parameter Considerations

5-32

ID: Title hisl_0055: Prioritized configuration objectives for high-integrity systems

Last Changed R2014a

6

MISRA C:2012 Compliance
Considerations

• “Modeling Style” on page 6-2
• “Block Usage” on page 6-16
• “Configuration Settings” on page 6-21
• “Stateflow Chart Considerations” on page 6-25
• “System Level” on page 6-34

6 MISRA C:2012 Compliance Considerations

6-2

Modeling Style

In this section...

“hisl_0061: Unique identifiers for clarity” on page 6-3
“hisl_0062: Global variables in graphical functions” on page 6-8
“hisl_0063: Length of user-defined function names to improve MISRA C:2012
compliance” on page 6-10
“hisl_0064: Length of user-defined type object names to improve MISRA C:2012
compliance” on page 6-11
“hisl_0065: Length of signal and parameter names to improve MISRA C:2012
compliance” on page 6-12
“hisl_0201: Define reserved keywords to improve MISRA C:2012 compliance” on page
6-13
“hisl_0202: Use of data conversion blocks to improve MISRA C:2012 compliance” on
page 6-14

 Modeling Style

6-3

hisl_0061: Unique identifiers for clarity

ID: Title hisl_0061: Unique identifiers for clarity

When developing a model:
A Use unique identifiers for Simulink signals.

Description

B Define unique identifiers across multiple scopes within a chart.
Notes The code generator resolves conflicts between identifiers so that symbols in

the generated code are unique. The process is called name mangling.
Rationale A, B Improve readability of a graphical model and mapping between

identifiers in the model and generated code.
References • DO-331, Section MB.6.3.2.b 'Low-level requirements are accurate and

consistent'
• IEC 61508–3, Table A.3 (3) 'Language subset'

IEC 61508–3, Table A.4 (5) 'Design and coding standards'
• ISO 26262-6, Table 1 (b) 'Use of language subsets'

ISO 26262-6, Table 1 (e) 'Use of established design principles'
ISO 26262-6, Table 1 (h) 'Use of naming conventions'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.12 (1) 'Coding Standard'

Model Advisor
Check

• By Task > Modeling Standards for DO-178C/DO-331 > Check
Stateflow charts for uniquely defined data objects

• By Task > Modeling Standards for IEC 61508 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for ISO 26262 > Check usage of
Stateflow constructs

• By Task > Modeling Standards for EN 50128 > Check usage of
Stateflow constructs

For DO-178C/DO-331 check details, see “Check Stateflow charts for uniquely
defined data objects”.

For IEC 61508, EN 50128 and ISO 26262 check details, see “Check usage of
Stateflow constructs”.

See Also “Code Appearance” in the Simulink Coder™ documentation
Last Changed R2015b

6 MISRA C:2012 Compliance Considerations

6-4

ID: Title hisl_0061: Unique identifiers for clarity

Examples Not Recommended

In the following example, two states Scope_1 and Scope_2 use local
identifier IntCounter.

The identifier IntCounter is defined for two states, Scope_1 and Scope_2.

 Modeling Style

6-5

ID: Title hisl_0061: Unique identifiers for clarity

6 MISRA C:2012 Compliance Considerations

6-6

ID: Title hisl_0061: Unique identifiers for clarity

Recommended

To clarify the model, create unique identifiers. In the following example, state
Scope_1 uses local identifier IntCounter_Scope_1. State Scope_2 uses
local identifier IntCounter_Scope_2.

The identifier IntCounter_Scope_1 is defined for state Scope_1. Identifier
IntCounter_Scope_2 is defined for Scope_2.

 Modeling Style

6-7

ID: Title hisl_0061: Unique identifiers for clarity

6 MISRA C:2012 Compliance Considerations

6-8

hisl_0062: Global variables in graphical functions

ID: Title hisl_0062: Global variables in graphical functions

Description For data with a global scope used in a function, do not use the data in
the calling expression if a value is assigned to the data in that function.

Rationale Enhance readability of a model by removing ambiguity in the values of
global variables.

References • IEC 61508–3, Table A.3 (3) 'Language subset'
IEC 61508–3, Table A.4 (4) 'Modular approach'
IEC 61508–3, A.4 (5) 'Design and coding standards'

• ISO 26262-6, Table 1 (b) 'Use of language subsets'
ISO 26262-6, Table 1 (f) 'Use of unambiguous graphical
representation'
ISO 26262-6, Table 1 (h) 'Use of naming conventions'

• EN 50128, Table A.4 (11) 'Language Subset'
EN 50128, Table A.12 (1) 'Coding Standard'
EN 50128, Table A.12 (2) 'Coding Style Guide'

• DO-331, Section MB.6.3.2.g 'Algorithms are accurate'
• MISRA C:2012, Rule 13.2

MISRA C:2012, Rule 13.5
Last Changed R2015b
Examples Consider a graphical function graphicalFunction that modifies the

global data G.

 Modeling Style

6-9

ID: Title hisl_0062: Global variables in graphical functions

Recommended

Not Recommended

6 MISRA C:2012 Compliance Considerations

6-10

hisl_0063: Length of user-defined function names to improve MISRA
C:2012 compliance

ID: Title hisl_0063: Length of user-defined function names to improve MISRA C:2012
compliance

To improve MISRA C:2012 compliance of the generated code when working
with Subsystem blocks with the block parameter Function name options
set to User specified:
A Limit the length of data object names to 31 characters or fewer.

Description

For this rule, Subsystem blocks include standard Simulink Subsystems,
MATLAB Function blocks, and Stateflow blocks.

Rationale A Function names longer than 31 characters might result in a MISRA
C:2012 violation.

References • MISRA C:2012, Rule 5.1
MISRA C:2012, Rule 5.2
MISRA C:2012, Rule 5.3

Prerequisites “hisl_0060: Configuration parameters that improve MISRA C:2012
compliance”

Last Changed R2015b

 Modeling Style

6-11

hisl_0064: Length of user-defined type object names to improve MISRA
C:2012 compliance

ID: Title hisl_0064: Length of user-defined type object names to improve MISRA C:2012
compliance

Description To improve MISRA C:2012 compliance of the generated code, limit the length of
data object names to 31 characters or fewer for:

• Simulink.AliasType
• Simulink.NumericType
• Simulink.Variant
• Simulink.Bus
• Simulink.BusElement
• Simulink.IntEnumType

Rationale The length of the type definitions in the generated code name might result in a
MISRA C:2012 violation.

References • MISRA C:2012, Rule 5.1
MISRA C:2012, Rule 5.2
MISRA C:2012, Rule 5.3
MISRA C:2012, Rule 5.4
MISRA C:2012, Rule 5.5

Prerequisites “hisl_0060: Configuration parameters that improve MISRA C:2012 compliance”
Last Changed R2015b

6 MISRA C:2012 Compliance Considerations

6-12

hisl_0065: Length of signal and parameter names to improve MISRA
C:2012 compliance

ID: Title hisl_0065: Length of signal and parameter names to improve MISRA C:2012
compliance

Description To improve MISRA C:2012 compliance of the generated code, limit the
length of signal and parameter names to 31 characters or fewer when using
any of the following storage classes:

• Exported global
• Imported Extern
• Imported Extern Pointer
• Custom storage class

Rationale The length of the signal and parameter name might result in a MISRA
C:2012 violation.

References • MISRA C:2012, Rule 5.1
MISRA C:2012, Rule 5.2
MISRA C:2012, Rule 5.3
MISRA C:2012, Rule 5.4
MISRA C:2012, Rule 5.5

Prerequisites “hisl_0060: Configuration parameters that improve MISRA C:2012
compliance”

Last Changed R2015b

 Modeling Style

6-13

hisl_0201: Define reserved keywords to improve MISRA C:2012
compliance

ID: Title hisl_0201: Define reserved keywords to improve MISRA C:2012 compliance

To improve MISRA C:2012 compliance of the generated code, define reserved
keywords to prevent identifier clashes within the project namespace.
A In the Configuration Parameters dialog box, on the Simulation

Target > Symbols > Reserved names pane, define reserved
identifiers.

Description

B Use a consistent set of reserved identifiers for all models.
Notes Simulink Coder checks models for standard C language key words. Expand

the list of reserved identifiers to include project specific identifiers. Examples
include target-specific clashes, standard and custom library clashes, and
other identified clashes.

Rationale Improve MISRA C:2012 compliance of the generated code.
See Also • “Simulation Target Pane: Symbols” in the Simulink documentation

• “Reserved Keywords” in the Simulink Coder documentation
• “Reserved names” in the Simulink Coder documentation

References MISRA C:2012, Rule 21.2
Last Changed R2015b

6 MISRA C:2012 Compliance Considerations

6-14

hisl_0202: Use of data conversion blocks to improve MISRA C:2012
compliance

ID: Title hisl_0202: Use of data conversion blocks to improve MISRA C:2012 compliance

Description To improve MISRA C:2012 compliance of generated code, insert a data type
conversion block when using signals of type single (real32_T) as inputs to
the following blocks:

• Math
• Trigonometry
• Sqrt

The data type conversion block to changes the data type to double (real_T)
Rationale Improve MISRA C:2012 compliance of the generated code.
Notes The function prototypes for many math functions require an input of type

double. To accommodate the function prototype, you can add a data type
conversion block. As an alternative to the data type conversion block, you
could define a new function interface using the Target Function Library (TFL).

References N/A
Last Changed R2015b

 Modeling Style

6-15

ID: Title hisl_0202: Use of data conversion blocks to improve MISRA C:2012 compliance

Example

Recommended

Add a data type conversion block to the input signal of the block. Convert the
output signal back to single.

6 MISRA C:2012 Compliance Considerations

6-16

Block Usage

In this section...

“hisl_0020: Blocks not recommended for MISRA C:2012 compliance” on page 6-16
“hisl_0101: Avoid invariant comparison operations to improve MISRA C:2012
compliance” on page 6-17
“hisl_0102: Data type of loop control variables to improve MISRA C:2012 compliance” on
page 6-20

hisl_0020: Blocks not recommended for MISRA C:2012 compliance

ID: Title hisl_0020: Blocks not recommended for MISRA C:2012 compliance

To improve MISRA C:2012 compliance of the generated code,
A Use only blocks that support code generation, as documented in the

Simulink Block Support Table

Description

B Do not use blocks that are listed as “Not recommended for production
code” in the Simulink Block Support Table

Notes If you follow this and other modeling guidelines, you increase the likelihood of
generating code that complies with the MISRA C:2012 standard.

Choose Simulink Help > Block Support Table > Simulink to view the
block support table.

Blocks with the footnote (4) in the Block Support Table are classified as “Not
Recommended for production code.”

Rationale A,B Improve MISRA C:2012 compliance of the generated code.
Model Advisor
Checks

By Product > Embedded Coder > Check for blocks not recommended
for MISRA C:2012 compliance

For check details, see “Check for blocks not recommended for MISRA C:2012”.
References MISRA C:2012
Last Changed R2015b

 Block Usage

6-17

hisl_0101: Avoid invariant comparison operations to improve MISRA
C:2012 compliance

ID: Title hisl_0101: Avoid invariant comparison operations to improve MISRA C:2012
compliance

Description To improve MISRA C:2012 compliance of generated code, avoid comparison
operations with invariant results. Comparison operations are performed by the
following blocks:

• If
• Logic
• Relational Operator
• Switch
• Switch Case
• Compare to Constant

Rationale Improve MISRA C:2012 compliance of the generated code.
References • MISRA C:2012, Rule 14.3

• MISRA C:2012, Rule 2.1
Last Changed R2015b
Example Invariant comparisons can occur in simple or compound comparison

operations. In compound comparison operations, the individual components
can be variable when the full calculation is invariant.
Simple: A uint8 is always greater than or equal to 0.

Simple: A uint8 cannot have a value greater then 256

6 MISRA C:2012 Compliance Considerations

6-18

ID: Title hisl_0101: Avoid invariant comparison operations to improve MISRA C:2012
compliance

Compound: The comparison operations are mutually exclusive

Stateflow:

 Block Usage

6-19

ID: Title hisl_0101: Avoid invariant comparison operations to improve MISRA C:2012
compliance

6 MISRA C:2012 Compliance Considerations

6-20

hisl_0102: Data type of loop control variables to improve MISRA C:2012
compliance

ID: Title hisl_0102: Data type of loop control variables to improve MISRA C:2012
compliance

Description
To improve MISRA C:2012 compliance of generated code, use integer data type
for variables that are used as loop control counter variables in:

• For and while loops constructed in Stateflow and MATLAB.
• While Iterator and For Iterator blocks.

Rationale Improve MISRA C:2012 compliance of the generated code.
References • MISRA C:2012, Rule 14.1
Last Changed R2015b

 Configuration Settings

6-21

Configuration Settings

In this section...

“hisl_0060: Configuration parameters that improve MISRA C:2012 compliance” on page
6-21
“hisl_0312: Specify target specific configuration parameters to improve MISRA C:2012
compliance” on page 6-23
“hisl_0313: Selection of bitfield data types to improve MISRA C:2012 compliance” on
page 6-24

hisl_0060: Configuration parameters that improve MISRA C:2012
compliance

ID: Title hisl_0060: Configuration parameters that improve MISRA C:2012 compliance

To improve MISRA C:2012 compliance of the generated code,Description
A Set the following model configuration parameters as specified:

Pane / Configuration Parameter Value

Diagnostics > Data Validity
 Model Verification block
enabling

Disable All

Code Generation pane
 System target file ERT-based target
Code Generation > Interface
pane

 Support: non-finite numbers Cleared (off)
 Support: continuous time Cleared (off)
 Support: non-inlined S-
functions

Cleared (off)

 MAT-file logging Cleared (off)
 Standard math library C89/C90 (ANSI)

 Code replacement library None

6 MISRA C:2012 Compliance Considerations

6-22

ID: Title hisl_0060: Configuration parameters that improve MISRA C:2012 compliance

Pane / Configuration Parameter Value

Code Generation > Code Style
pane

 Parenthesis level Maximum (Specify

precedence with

parentheses)

Code Generation > Symbols
pane

 Maximum identifier length 31

Note If you follow this and other modeling guidelines, you increase the likelihood of
generating code that complies with the MISRA C:2012 standard.

Rationale A Improve MISRA C:2012 compliance of the generated code.
Model Advisor
Checks

By Product > Embedded Coder > Check configuration parameters for
MISRA C:2012 compliance

For check details, see “Check configuration parameters for MISRA C:2012”.
References • MISRA C:2012
Last Changed R2015b

 Configuration Settings

6-23

hisl_0312: Specify target specific configuration parameters to improve
MISRA C:2012 compliance

ID: Title hisl_0312: Specify target specific configuration parameters to improve MISRA
C:2012 compliance

To improve MISRA C:2012 compliance of generated code, use a consistent set
of model parameters. The parameters include, but are not limited to:
A Explicitly setting model character encoding using the

slCharacterEncoding(encoding) function.
 B In the Configuration Parameters dialog box, explicitly selecting a

Hardware Implementation > Signed integer division rounds to:
parameter.

Description

C If complex numbers are not required, deselecting the Code
Generation > Interface > Software Environment > complex
numbers parameter.

Notes Base the selection of the integer division method on the target hardware and
compiler. When available, in the Configuration Parameters dialog box, specify
both of these parameters:

• Hardware Implementation > Device vendor
• Hardware Implementation > Device type

Rationale Improve MISRA C:2012 compliance of the generated code.
See Also • “Configure Target Hardware” in the Simulink Coder documentation.

• slCharacterEncoding in the Simulink documentation.
• “hisl_0060: Configuration parameters that improve MISRA C:2012

compliance”
References • MISRA C:2012, Dir 1.1
Last Changed R2015b

6 MISRA C:2012 Compliance Considerations

6-24

hisl_0313: Selection of bitfield data types to improve MISRA C:2012
compliance

ID: Title hisl_0313: Selection of bitfield data types to improve MISRA C:2012 compliance

Description To improve MISRA C:2012 compliance of generated code when bitfields
are used, in the Configuration Parameters dialog box, set Optimization >
Signals and Parameters > Code generation > Bitfield declarator type
specifier to uint_T.

Rationale Improve MISRA C:2012 compliance of the generated code.
Notes Set Bitfield declarator type specifier to uint_T if any of the following

Optimization parameters are enabled:

• Optimization > Signals and Parameters > Code generation > Pack
Boolean data into bitfields

• Optimization > Stateflow > Code generation > Use bitsets for
storing state configuration

• Optimization > Stateflow > Code generation > Use bitsets for
storing Boolean data

See Also • “Optimization Pane: Signals and Parameters” in the Simulink
documentation.

References • MISRA C:2012, Rule 6.1
Last Changed R2015b

 Stateflow Chart Considerations

6-25

Stateflow Chart Considerations

In this section...

“hisf_0064: Shift operations for Stateflow data to improve MISRA C:2012 compliance”
on page 6-26
“hisf_0065: Type cast operations in Stateflow to improve MISRA C:2012 compliance” on
page 6-28
“hisf_0211: Protect against use of unary operators in Stateflow Charts to improve
MISRA C:2012 compliance” on page 6-29
“hisf_0212: Data type of Stateflow for loop control variables to improve MISRA C:2012
compliance” on page 6-30
“hisf_0213: Protect against divide-by-zero calculations in Stateflow charts to improve
MISRA C:2012 compliance” on page 6-31

6 MISRA C:2012 Compliance Considerations

6-26

hisf_0064: Shift operations for Stateflow data to improve MISRA C:2012
compliance

ID: Title hisf_0064: Shift operations for Stateflow data to improve MISRA C:2012
compliance

To improve MISRA C:2012 compliance of the generated code with Stateflow
bit-shifting operations, do not perform:
A Right-shift operations greater than the bit-width of the input type, or

by a negative value.

Description

B Left-shift operations greater than the bit-width of the output type, or
by a negative value.

Note If you follow this and other modeling guidelines, you increase the likelihood of
generating code that complies with the MISRA C:2012 standard.

Rationale A,B To avoid shift operations in the generated code that might be a MISRA
C:2012 violation.

References N/A
Prerequisites “hisl_0060: Configuration parameters that improve MISRA C:2012

compliance”
Last Changed R2015b
Example In the first equation, shifting 17 bits to the right pushes data stored in a 16–

bit word out of range. The resulting output is zero. In the second equation,
shifting the data 33 bits pushes data beyond the range of storage for a 32–bit
word. Again, the resulting output is zero.

 Stateflow Chart Considerations

6-27

ID: Title hisf_0064: Shift operations for Stateflow data to improve MISRA C:2012
compliance

6 MISRA C:2012 Compliance Considerations

6-28

hisf_0065: Type cast operations in Stateflow to improve MISRA C:2012
compliance

ID: Title hisf_0065: Type cast operations in Stateflow to improve MISRA C:2012 compliance

To improve MISRA C:2012 compliance of the generated code, protect against
Stateflow casting integer and fixed-point calculations to wider data types
than the input data types by:
A Explicitly type casting the calculations

Description

B Using the := notation in Stateflow
Note If you follow this and other modeling guidelines, you increase the likelihood of

generating code that complies with the MISRA C:2012 standard.
Rationale A,B To avoid shift operations in the generated code that might be a MISRA

C:2012 violation.
References N/A
Prerequisites “hisl_0060: Configuration parameters that improve MISRA C:2012

compliance”
Last Changed R2015b
Example The example shows the default behavior and both methods of controlling the

casting (explicitly type casting and using the colon operator).

 Stateflow Chart Considerations

6-29

hisf_0211: Protect against use of unary operators in Stateflow Charts to
improve MISRA C:2012 compliance

ID: Title hisf_0211: Protect against use of unary operators in Stateflow Charts to improve
MISRA C:2012 compliance

To improve MISRA C:2012 compliance of the generated code:Description
A Do not use unary minus operators on unsigned data types

Note The MATLAB and C action languages do not restrict the use of unary minus
operators on unsigned expressions.

Rationale A Improve MISRA C:2012 compliance of the generated code.
References • MISRA C:2012, Rule 10.1
 R2014b
Example Not Recommended:

Applying the unary minus operator to the unsigned integer results in a
MISRA C:2012, Rule 10.1 violation. The resulting output wraps around
the maximum value of 256 (uint8). In this example, if the input variable
In_SF_uint8 equals 7, then the output variable varOut_uint8 equals 256
– (7 * 3), or 235. The simulation and code generation values are in agreement.

6 MISRA C:2012 Compliance Considerations

6-30

hisf_0212: Data type of Stateflow for loop control variables to improve
MISRA C:2012 compliance

ID: Title hisf_0212: Data type of Stateflow for loop control variables to improve MISRA
C:2012 compliance

To improve MISRA C:2012 compliance of the generated code:Description
A Explicitly select an integer data type as the control variable in a

Stateflow for loop
Note The default data type in Simulink and Stateflow is double. Explicitly select

an integer data type.
Rationale A Improve MISRA C:2012 compliance of the generated code
References • MISRA C:2012, Rule 14.1
Last Changed R2015b

 Stateflow Chart Considerations

6-31

hisf_0213: Protect against divide-by-zero calculations in Stateflow charts
to improve MISRA C:2012 compliance

ID: Title hisf_0213: Protect against divide-by-zero calculations in Stateflow charts to
improve MISRA C:2012 compliance

To improve MISRA C:2012 compliance of the generated code for floating point
and integer-based operations, do one of the following:
A Perform static analysis of the model to prove that division by zero is

not possible
B Provide run-time error checking in the generated C code by explicitly

modeling the error checking in Stateflow
C Modify the code generation process using Code Replacement Libraries

(CRLs) to protect against division by zero

Description

D For integer-based operations, in the Configuration Parameters dialog
box, on the Optimization pane, clear Remove code that protects
against division arithmetic exceptions

Note Using run-time error checking introduces additional computational and
memory overhead in the generated code. It is preferable to use static analysis
tools to limit errors in the generated code. You can use Simulink Design
Verifier or Polyspace® Code Prover™ to perform the static analysis.

If static analysis determines that sections of the code can have a division
by zero, then add run-time protection into that section of the model (see
example). Using a modified CRL or selecting the parameter Remove code
that protects against division arithmetic exceptions protects division
operations against divide-by-zero operations. However, this action does
introduce additional computational and memory overhead.

Use only one of the run-time protections (B, C or D) in a model. Using more
than one option can result in redundant protection operations.

Rationale A,B,
C,D

Improve MISRA C:2012 compliance of the generated code

References • MISRA C:2012, Dir 4.1
See Also • “What Is Code Replacement?” and “Code Replacement Libraries” in the

Simulink Coder documentation
• “hisl_0002: Usage of Math Function blocks (rem and reciprocal)”

6 MISRA C:2012 Compliance Considerations

6-32

ID: Title hisf_0213: Protect against divide-by-zero calculations in Stateflow charts to
improve MISRA C:2012 compliance

• “hisl_0005: Usage of Product blocks”
• “hisl_0054: Configuration Parameters > Optimization > Remove code that

protects against division arithmetic exceptions”
Last Changed R2015b

 Stateflow Chart Considerations

6-33

ID: Title hisf_0213: Protect against divide-by-zero calculations in Stateflow charts to
improve MISRA C:2012 compliance

Example Run-time divide by zero protection can be realized using a graphical function.
Unique functions should be provided for each data type.

6 MISRA C:2012 Compliance Considerations

6-34

System Level

In this section...

“hisl_0401: Encapsulation of code to improve MISRA C:2012 compliance” on page
6-34
“hisl_0402: Use of custom #pragma to improve MISRA C:2012 compliance” on page
6-35
“hisl_0403: Use of char data type improve MISRA C:2012 compliance” on page 6-36

hisl_0401: Encapsulation of code to improve MISRA C:2012 compliance

ID: Title hisl_0401: Encapsulation of code to improve MISRA C:2012 compliance

Description To improve the MISRA C:2012 compliance of the generated code, encapsulate
manually inserted code. This code includes, but is not limited to, C, Fortran,
and assembly code.

Rationale Improve MISRA C:2012 compliance of the generated code
See Also • “External Code Integration” in the Embedded Coder documentation.

• “External Code Integration” in the Simulink Coder documentation.
Notes Simulink provides multiple methods for integrating existing code. The user is

responsible for encapsulating the generated code.

Encapsulation can be defined as “the process of compartmentalizing the
elements of an abstraction that constitute its structure and behavior;
encapsulation serves to separate the contractual interface of an abstraction
and its implementation” a

References • MISRA C:2012, Dir 4.3
Last Changed R2015b

aBooch, Grady, R. Maksimchuk, M. Engle, B. Young, J. Conallen, K. Houston. Object-
Oriented Analysis and Design with Applications. 3rd ed. Boston, MA: Addison-Wesley
Professional, 2007.

 System Level

6-35

hisl_0402: Use of custom #pragma to improve MISRA C:2012 compliance

ID: Title hisl_0402: Use of custom #pragma to improve MISRA C:2012 compliance

To improve the MISRA C:2012 compliance of the generated code, document
user defined pragma. In the documentation, include:
A Memory range (start and stop address)
B Intended use

Description

C Justification for using a pragma
Rationale Improve MISRA C:2012 compliance of the generated code
See Also • “Control Data and Function Placement in Memory by Inserting Pragmas”

in the Embedded Coder documentation.
• “Document Generated Code with Simulink Report Generator” in the

Simulink Coder documentation.
Notes The Simulink Report Generator™ documents pragmas.
References • MISRA C:2012, Dir 1.1
Last Changed R2015b

6 MISRA C:2012 Compliance Considerations

6-36

hisl_0403: Use of char data type improve MISRA C:2012 compliance

ID: Title hisl_0403: Use of char data type to improve MISRA C:2012 compliance

To improve the MISRA C:2012 compliance of the generated code with custom
storage classes that use the Char data type, only use:
A Plain char type for character values.

Description

B Signed and unsigned char type for numeric values.
Rationale Improve MISRA C:2012 compliance of the generated code.
See Also • “Control Data and Function Placement in Memory by Inserting Pragmas”

in the Embedded Coder documentation.
• “Control Data and Function Placement in Memory by Inserting Pragmas”

in the Embedded Coder documentation.
• “Document Generated Code with Simulink Report Generator” in the

Simulink Coder documentation.
References • MISRA C:2012, Rule 10.1

• MISRA C:2012, Rule 10.2
Last Changed R2015b

